首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2016年)设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令U= (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z)。
(2016年)设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令U= (Ⅰ)写出(X,Y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z)。
admin
2018-04-23
113
问题
(2016年)设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x
2
<y<
}上服从均匀分布,令U=
(Ⅰ)写出(X,Y)的概率密度;
(Ⅱ)问U与X是否相互独立?并说明理由;
(Ⅲ)求Z=U+X的分布函数F(z)。
选项
答案
(Ⅰ)区域D的面积S=∫
0
1
[*],则(X,Y)的概率密度为 [*] (Ⅱ)P{U=0)=P{X>Y}=∫
0
1
dx∫
x
2
x
3dy=[*], P{U=1}=1-P{U=0}=[*], P{U=0,X≤[*]}=P{X>Y,X≤[*]} [*] 因为P{U=0,X≤[*]}≠P{U=0).P{X≤[*]}, 所以U与X不独立。 (Ⅲ)由全概率公式可得 F(z)=P{Z≤z}=P{X+U≤z} =P{X+U≤z,X≤Y}+P{X+U≤z,X>Y} =P{X≤z-1,X≤Y}+P{X≤z,X>Y}。 当0≤z<1时, F(z)=P{X≤2,X>Y}=∫
0
z
dx∫
x
2
x
3dy=[*]z
2
-2
3
; 当1≤z<2时, F(z)=P{X≤z-1,X≤Y}+P{X≤z,X>Y} [*] 所以 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BdX4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为f(x)=,一∞<x<+∞,λ>0是未知参数.(Ⅰ)求λ的矩估计量;(Ⅱ)求λ的最大似然估计量
(1)用x=et化简微分方程(2)求解
设,a,b,c是三个互不相等的数,求y(n).
设二维随机变量(X,Y)的概率密度为求:(1)方差D(XY);(2)协方差Cov(3X+Y,X-2Y).
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
n维向量组α1,α2,…,α3(3≤s≤n)线性无关的充要条件是()
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设X1,X2,…,X8是来自总体N(2,1)的简单随机样本,则统计量服从()
设f(x)为连续函数,证明:
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,且X与Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
随机试题
高尔基的第一篇短篇小说是__________。高尔基早期浪漫主义作品的典范是__________。
患者,男性,35岁,右侧睾丸肿大半年入院。行睾丸切除术后病理回报为精原细胞瘤,下一步的治疗应为
A.垂体ACTH微腺瘤B.小细胞性肺癌C.肾上腺皮质腺瘤D.肾上腺皮质腺癌E.肾上腺皮质结节状增生(2006年第124题)引起Cushing病的原因是
下列属于艾叶配阿胶,两药相合配伍意义的是()。
我国产业结构调整与优化的总原则不包括的内容是()。
公民道德建设以()为着力点。
已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶。甲车、乙车的速度曲线分别为v甲和v乙(如图1所示)。那么对于图中给定的t0和t1,下列判断中一定正确的是()。
某公司的主要业务是出租图书和唱碟。由于业务需求,该公司委托希赛公司开发一套信息管理系统。该系统将记录所有的图书信息、唱碟信息、用户信息、用户租借信息等。希赛公司决定采用面向对象的分析和设计方法开发此系统。图14-3所示为某类图书或唱碟被借阅时应记录的信息,
A、 B、 C、 D、 D
关于网络管理的描述中,错误的是()。
最新回复
(
0
)