首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
admin
2016-10-26
68
问题
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
选项
答案
(定义法,同乘) 对矩阵B按列分块,记B=(β
1
,β
2
,…,β
n
),若x
1
β
1
+x
2
β
2
+…+x
n
β
n
=0,用分块矩阵可写成 (β
1
,β
2
,…,β
n
)[*]=0, 即Bx=0. 用矩阵A左乘上式,并代入AB=E,得x=Ex=ABx=A0=0.所以B的列向量β
1
,β
2
,…,β
n
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BLu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数)
设二二次型f(x1,x2,x3)=XTAX=ax12+2x22+(﹣2x32)+2bx1x3(b>0),其中二次矩阵A的特征值之和为1,特征值之积为﹣(I)求a,b的值;(II)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的
(2008年试题,21)设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
随机试题
羚角钩藤汤的功用是
离子色谱法测定氯化物、氟化物等阴离子时,不同浓度的离子同时分析时相互干扰,可采用()方法消除干扰。
管理与经营的联系与区别:
下列关于国际经济合作的类型说法正确的是
下列关于堆载预压法处理软弱黏土地基的叙述中,哪些选项是正确的?()
质监机构不按照本规定履行公路工程质量监督职责、承担质量监督责任的,应该()。
下列变动成本差异中,无法从生产过程的分析中找出产生原因的是()。
下列活动形成的关系不属于行政法律关系的是:
WhichofthefollowingstatementsisNOTtrueaboutIsaacNewton?NewtontookhisrevengeonFlamsteed______.
TheNationalGalleryinLondonhasmorevisitorsthan_______anyotherbecauseofitsfreeadmission.
最新回复
(
0
)