首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明: ∫0af(x)dx+∫0bφ(y)dy
admin
2017-10-23
102
问题
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
∫
0
a
f(x)dx+∫
0
b
φ(y)dy
选项
答案
设g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—ab,则g’(a)=f(a)一b.令g’(a)=0,得b=f(a),即a=φ(b).当0<a<φ(b)时,由f’(x)>0有f(a)<f[φ(b)]=b,从而知g’(a)<0;当0<φ(b)<a时有f[φ(6)]=b<f(a),从而知g’(a)>0,所以g[φ(b)]为最小值,即 g[φ(b)]=∫
0
φ(b)
f(x)dx+∫
0
b
φ(y)dy一φ(b)b. 由于 (g[φ(b)])’=f[φ(b)]φ’(b)+φ(b)一φ(b)一φ’(b)b =bφ’(b)+φ(b)一φ(6)一φ’(b)b≡0, 又 g[φ(0)]=∫
0
φ(0)
f(x)dx+∫
0
0
φ(Y)dy一φ(0)0=0(因φ(0)=0), 所以g[φ(b)]≡0,从而有 g(a)=∫
0
a
f(x)dx+∫
0
b
φ(y)dy—[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/AzX4777K
0
考研数学三
相关试题推荐
举例说明函数可导不一定连续可导.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
改变积分次序.
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
设k为常数,方程kx一+1=0在(0,+∞)内恰有一根,求k的取值范围.
证明:用二重积分证明
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)一,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
求不定积分
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
随机试题
特别行政区立法会,依法行使特别行政区的立法权。为了保证立法会议员依法行使权力,《基本法》规定立法会议员在任职期间享有下列权利,主要有:_________;_________;_________。
属于非数字化影像的是
建筑节能工程为单位建筑工程中的一个分部工程,其分项工程包括()。
设置在汇接局(Tm)和端局(C5)的时钟是()。
合规管理部门制定的合规管理计划的内容不包括()。
承包人在进行柱基础填埋前48小时电话通知工程师准备验收,临近验收时,工程师因有事无法参加验收,便派人通知承包人延期验收。第4天,承包人为了不影响施工进度,自行对柱基础进行了验收,并作了记录。此后承包人开始继续施工,并向发包人提出工程延期2天、承担停工费用损
从国际经验来看,政府问财政收支结构划分呈现的基本特征是()。
按照通货膨胀的程度,可将其分为()。
胡锦涛指出在新形势下,中英双方应该从21世纪全球视角和战略高度规划好两国关系,重点要做好()。
分拆上市
最新回复
(
0
)