首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设一元函数f(x)有下列四条性质。 ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用表示可由性质P推出性质Q,则有( )
设一元函数f(x)有下列四条性质。 ①f(x)在[a,b]连续; ②f(x)在[a,b]可积; ③f(x)在[a,b]存在原函数; ④f(x)在[a,b]可导。 若用表示可由性质P推出性质Q,则有( )
admin
2017-01-21
98
问题
设一元函数f(x)有下列四条性质。
①f(x)在[a,b]连续;
②f(x)在[a,b]可积;
③f(x)在[a,b]存在原函数;
④f(x)在[a,b]可导。
若用
表示可由性质P推出性质Q,则有( )
选项
A、
B、
C、
D、
答案
C
解析
这是讨论函数f(x)在区间[a,b]上的可导性、连续性及可积性与原函数存在性间的关系问题。由f(x)在[a,b]上可导
f(x)在[a,b]可积且存在原函数。故选C。
转载请注明原文地址:https://www.kaotiyun.com/show/99H4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设f(x),g(x)在[a,b]上连续,且满足证明
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中恰有一件是废品”;
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P{丨X+Y丨≥6}≤___________.
随机试题
简述刷涂操作特点。
氟牙症的临床特征是釉质发育不全的临床特征是
男,56岁。突发言语不清、跌倒在地。小便失禁,无肢体抽搐。急送至医院急诊室。体检:昏迷,瞳孔左侧6mm,右侧3mm,血压180/110mmHg,心率65次/min,律齐。最可能的诊断为
下列说法正确的是()。
港航工程混凝土的配制强度公式为:fcu,o=fcu,k+1.645σ式中fcu,o为()。
从事生产、经营的纳税人被宣告破产,按照规定应办理工商注销登记的,应当首先向工商行政管理机关注销登记,然后向原税务登记机关注销登记。 ( )
行政职权是行政主体实施国家行政管理活动的资格及权能,它不包括()。
如果企业定额管理基础好,各月末在产品数量变化不大,则该企业适宜采用的完工产品和在产品成本分配方法是()。
本票的持票人未按照规定期限提示本票的,丧失对出票人的追索权。()
下列选项中,不属于可以解聘教师的法定事由的是()。
最新回复
(
0
)