首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
专升本
已知定义在(-∞,+∞)上的可导函数f(x)满足方程xf(x)-4∫1xf(t)=x3-3,试求: (1)函数f(x)的表达式; (2)函数f(x)的单调区间与极值; (3)曲线f(x)的凹凸区间与拐点.
已知定义在(-∞,+∞)上的可导函数f(x)满足方程xf(x)-4∫1xf(t)=x3-3,试求: (1)函数f(x)的表达式; (2)函数f(x)的单调区间与极值; (3)曲线f(x)的凹凸区间与拐点.
admin
2013-11-20
77
问题
已知定义在(-∞,+∞)上的可导函数f(x)满足方程xf(x)-4∫
1
x
f(t)=x
3
-3,试求:
(1)函数f(x)的表达式;
(2)函数f(x)的单调区间与极值;
(3)曲线f(x)的凹凸区间与拐点.
选项
答案
①f(x)=x
3
-3x
2
. ②单调区间:(-∞,0)U(2,+∞)递增 (0,2)递减 极值:x=0时极大值0,x=2时极小值-4. ③x∈(-∞,1),凹区间,x∈(1,+∞),凸区间,拐点:(1,-2).
解析
①因为f(x)+xf(x)-4(2x)=3x
2
(对方程两边求导),即y’-
=3x.所以P(x)=
,Q(x)=3x,y=-3x
2
+Cx
3
.由题意得f(1)=-2,所以C=1.所以f(x)=x
3
-3x
2
.
②令f’(x)=3x
2
-6x=0,则x
1
=0,x
2
=2,当在(-∞,0)U(2,+∞)函数单调递增;当在(0,2)函数单调递减.所以在x=0处取极大值f(4)=0,在x=2取极小值f(2)=-4.
③令f"(x)=6x-6=0,得x
3
=1,所以当x∈(-∞,1)时,为凹区间;当z∈(1,+∞)为凸区间,拐点为(1,-2).
转载请注明原文地址:https://www.kaotiyun.com/show/Al1C777K
本试题收录于:
数学题库普高专升本分类
0
数学
普高专升本
相关试题推荐
__________是一个由行和列交叉排列的二维表,用于组织和分析数据。
Excel2010的编辑栏由名称框、__________和编辑区构成。
下列软件___________是操作系统。
关系数据库中,在表中选择不同的字段(属性)形成新表,属于关系运算中的_____。
设下述积分在全平面是与路径无关:其中函数φ(x)具有连续导数,并且φ(1)=1.求积分值I:
设非齐次线性方程组,已知(1,一1,1)T是方程组的一个解.a,b为何值时方程组有无穷多解?并求处导出组的基础解系表示的通解.
设曲线积分与路径无关,其中f(x)有一阶导数且f(0)=一1,A为(0,0),B为(1,1),试求f(x)和L的值.
微分方程y’=2xy的通解y=().
设f(x)在(-∞,+∞)内连续,且F(x)=[(x-2t)f(t)dt,试证:若f(x)为偶函数,则F(x)亦为偶函数.
已知f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证,在(0,1)内至少存在一点ξ,使得f’(ξ)cosξ=f(ξ)sinξ成立.
随机试题
中国抗日战争时期的土地政策是()
Windows中的“写字板”是文字处理软件,不能进行图形处理。()
交界性肿瘤
糖尿病酮症酸中毒的特征性表现为
根据FIDic《生产设备和设计—施工合同条件》的规定,出现()情况时,承包商不能进行利润索赔。
私募基金的投资者通常是机构投资者或投资经验和技巧较为丰富的________投资者,且投资者数量较________。()
这种节奏型常见于()。
下列关于党的领导与政府的领导说法正确的有()。
数字黑暗时代是指历史上保存的数字文档在未来可能难以读取,甚至无法读取的情况。原因是现存的数字文档和多媒体所采用的数据格式由于过于陈旧而被弃用,或者无法识别。根据上述定义,下列可能属于数字黑暗时代的情形是:
设矩阵.B=P-1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
最新回复
(
0
)