首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫0tf(x)dx+∫f(0)f(t)g(y)dy=t3(t≥0),则f(x)的表达式是_________.
admin
2019-07-28
80
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=t
3
(t≥0),则f(x)的表达式是_________.
选项
答案
f(x)=x
2
(x≥0).
解析
由定积分的几何意义知:
∫
0
t
f(x)dx=由曲线y=f(x),x、y轴及直线x=t>所围成的曲边梯形的面积,
∫
f(0)
f(t)
g(y)dy=由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积.
x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别
为t与f(t)),见右图.
于是 ∫
0
t
f(x)dx+∫
f(0)
f(t)
g(y)dy=tf(t).
因此 tf(t)=t
3
,f(t)=t
2
(t≥0),
即 f(x)=x
2
(x≥0).
转载请注明原文地址:https://www.kaotiyun.com/show/AXN4777K
0
考研数学二
相关试题推荐
设A为b阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,….A-1α线性无关.
设齐次线性方程组有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明:≥(b-a)2.
求函数的反函数.
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定甜为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
设a为常数,求
设F(x)=∫0x2e-t2dt,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)∫-23x2F’(x)dx.
设a>0为常数,求积分I=xy2dσ,其中D:x2+y2≤ax.
建一容积为V0的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.
随机试题
简述通信系统的编码方式。
下列清热剂中,不含酒的成分的是
EDTA.2NaCl比枸橼酸钠抗凝效果强多少倍
地衣类药材是
招标投标管理的基本原则包括()
经营者销售商品时采取的下列经营行为中,属于不正当竞争行为的是()
探究教学
(1)使用SQL语句查询每个职工所经手的具有最高金额的订购单信息(orders表),并将结果按金额升序存储到表results中。(2)使用SQL命令建立视图view_b,视图中是目前在orders表中没有所签订单的职工(employee)信息,记
Bythetimeyouretire,there’snodoubtaboutit,yourbrainisn’twhatitusedtobe.By65,mostpeoplewillstarttonotic
Themagicianmadeusbelievehecutthegirlintopieces,butitwasmerelyan
最新回复
(
0
)