首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定甜为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定甜为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
admin
2018-05-22
65
问题
设函数z=f(u),方程u=φ(u)+∫
y
x
P(t)dt确定甜为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
选项
答案
z=f(u)两边对x及y求偏导,得[*] 方程u=φ(u)+∫
y
x
P(t)dt两边对x及y求偏导,得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Oqk4777K
0
考研数学二
相关试题推荐
计算二重积分,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成.
确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
已知,且A2-AB=E,其中E是3阶单位矩阵,求矩阵B.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使;(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
设S表示夹在x轴与曲线y=F(x)之间的面积.对任何t>0,S1(t)表示矩形-t≤x≤t,0≤y≤F(t)的面积.求:(1)S(t)=S—S1(t)的表达式;(2)S(t)的最小值.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
随机试题
下列可作为中药指纹图谱的研究对象的是
患者男性,30岁。因发热、乏力、恶心、食欲减退10日来诊。查体:皮肤、巩膜黄染,肝右肋下1cm,脾左肋下可及。白细胞5.0×109/L,N0.48,L0.52,Hb130g/L,血清总胆红素102μmol/L,结合胆红素70.4μmol/L,ALT1320
关于神经递质的叙述,不正确的是
中药材的含水量过高时会发生
采用装运港船上交货价(FOB)进口设备时,不属于卖方的责任是()。
根据生命周期理论,人从出生到死亡会经历婴儿、童年、少年、青年、中年和老年阶段,结合不同的阶段制定理财规划非常必要,一般而言理财规划的重要时期是指()
________是对几家供应商(至少3家)所提供的报价进行比较的一种采购方式,其目的是确保价格的竞争性。
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1,证明:存在c∈(0,1)使得f(c)=1-2c;
运行下列程序,显示的结果是( )。a=instr(5,"Hello!Beijing.","e")b=sgn(3>2)c=a+bMsgBoxc
_____,awell-knownpublisherofpaperbackbooks,wasfoundedin1935.
最新回复
(
0
)