首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,如果齐次方程组Aχ=0的解全是方程b1χ1+b2χ2+…+bnχn=0的解,证明向量β=(b1,b2,…,bn)可由A的行向量线性表出.
设A是m×n矩阵,如果齐次方程组Aχ=0的解全是方程b1χ1+b2χ2+…+bnχn=0的解,证明向量β=(b1,b2,…,bn)可由A的行向量线性表出.
admin
2018-06-12
60
问题
设A是m×n矩阵,如果齐次方程组Aχ=0的解全是方程b
1
χ
1
+b
2
χ
2
+…+b
n
χ
n
=0的解,证明向量β=(b
1
,b
2
,…,b
n
)可由A的行向量线性表出.
选项
答案
因为Aχ=0的解全是b
1
χ
1
+b
2
χ
2
+…+b
n
χ
n
=0的解,所以 Aχ=0与[*]同解. 那么r(A)=[*] 设矩阵A行向最组为α
1
,α
2
,…,α
m
,则r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β).因此β可由A的行向量线性表出.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/AUg4777K
0
考研数学一
相关试题推荐
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Aχ=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Aχ=b的通解是_______.
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中(1)A2(2)P-1AP(3)AT(4)E-Aα肯定是其特征向量的矩阵共有()
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
若f(-1,0)为函数f(χ,y)=e-χ(aχ+b-y2)的极大值,则常数a,b应满足的条件是
下列等式或不等式中正确的共有
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及z轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x—t)dt,G(x)=∫01xg(xt)出,则当x→0时,F(x)是G(x)的().
利用曲面的面积公式推导坐标xOy平面上光滑曲线y=f(x)≥0在区间[a,b]上绕x坐标轴旋转一周所得曲面的表面积的公式.
设X1,X2,…,X25是取自于正态总体N(μ,9)的样本,其中μ为未知参数,如果对检验问题H0:μ=μ0,H1:μ≠μ0,取检验的拒绝域为W={(X1,X1,…,X25):}其中试决定常数C,使检验的显著性水平为0.05.
随机试题
对于引进500#氨压缩浅冷装置,如果主机失电,重新启动主机即可。
先秦法家中,认为法的最大作用是“立公弃私”的思想家是
除以上体征外,护士若考虑该妇女怀孕,其另外的可能体征是该孕妇的预产期是
国债的限度包括的含义有()。
房屋交易双方为避税而签订“阴阳合同”的风险有()。
经济净现值(ENPV)是指用社会折现率将项目计算期内各年的经济净效益流量折算到项目建设期初的现值之和,是()分析的主要指标。
下列关于工程施工合同索赔,程序描述正确的有( )。
关于人民币零存整取存款计息方式选择,下列说法不正确的是()。
对现代企业从业人员来说,要从()方面着手调整员工树立纪律观念。
题西溪无相院张先积水涵虚上下清,几家门静岸痕平。浮萍破处见山影,小艇归时闻草声。人郭僧寻尘里去,过桥人似鉴中行。已凭暂雨添秋色,莫放修芦碍月生。第二联是怎样写景的?请简要分析
最新回复
(
0
)