首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵A的特征值; (2)求可逆矩阵P使得P-1AP=∧.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵A的特征值; (2)求可逆矩阵P使得P-1AP=∧.
admin
2016-05-09
89
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(1)求矩阵A的特征值;
(2)求可逆矩阵P使得P
-1
AP=∧.
选项
答案
(1)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
-1
AP
1
=B,因此矩阵A与B相似,则 |λE-B|=[*]=(λ-1)
2
(λ-4), 矩阵B的特征值是1,1,4,由相似矩阵的性质,故矩阵A的特征值为1,1,4. (2)由(E-B)χ=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(-1,1,0)
T
,β
2
=(-2,0,1)
T
;由(4E-B)χ=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
. 令P
2
=(β
1
,β
2
,β
3
)=[*],得P
2
-1
BP
2
=[*]. 则P
2
-1
P
1
-1
AP
1
P
2
=[*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
)时,有 P
-1
AP=∧=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jgw4777K
0
考研数学一
相关试题推荐
设A是n阶反对称矩阵,(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=________.
A、 B、 C、 D、 D
求z=x2-2y2+2x+4在区域x2+4y2≤4上的最小值和最大值.
设A=,其中a<0,方程组Ax=0有非零解,A*是A的伴随矩阵,则方程组A*x=0的基础解系为()
设A=,B是2阶矩阵,AB=A且B≠E,则a=________
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)证明:∫0nTxf(x)dx=f(x)dx(n为正整数);
设向量组(Ⅰ):a1,a2,…,ar可由向量组(Ⅱ):β1,β2,…,βs线性表示,则().
设D是由曲线与直线y=-x所围成的区域,D1是D在第二象限的部分,则(xsiny+ycosx)dxdy=().
随机试题
胰岛内有许多内分泌细胞,由不同细胞形成的肿瘤常以其分泌的激素命名,如B细胞分泌的胰岛素激素,称作胰岛素瘤;C细胞分泌的(I),称作(2);Ec细胞分泌与(3),称作(4)。
滴虫性阴道炎诊治,不正确的是()
患者,男,46岁。建筑工人,人院时诊断为破伤风。以下与本病最有关的既往史是
图示a)、b)系统中的均质圆盘质量、半径均相同,角速度与角加速度分别为ω1、ω2和α1,α2,则有:
项目结构图是一个重要的组织工具,其反映的是()。
GDP和GNP作为国民收入核算的两个指标,反映了统计上的两种原则,关于这两个指标说法正确的是( )。
课堂教学中,经常出现教师在学生不注意参与学习时突然加重语气或提高声调的现象,教师采用这种手段的目的是为了引起学生的()。
班级管理常见的模式有()。
Cheaplongdistance,theabilitytospoofcallerID(来电显示)andthecreditcrisisarebeingusedtofacilitateascamcalledvish
第十二届全国人民代表大会第三次会议政府工作报告中看点众多,精彩纷呈。为了更好地宣传大会精神,新闻编辑小王需制作一个演示文稿,素材放于考生文件夹下的“文本素材.docx”及相关图片文件,具体要求如下:设置幻灯片为循环放映方式,每张幻灯片的自动切换时间为1
最新回复
(
0
)