首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
admin
2019-07-12
84
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
选项
A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.
答案
B
解析
因为ξ
1
≠ξ
2
,知ξ
1
-ξ
2
是Ax=0的非零解,故秩r(A)
*≠0,说
明有代数余子式A
ij
≠0,即丨A丨中有n-1阶子式非零.因此秩r(A)=n-1.那么n-r(A)=1,即Ax=0的基础解系仅含有一个非零解向量.应选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/A3J4777K
0
考研数学三
相关试题推荐
设A为三阶实对称矩阵,且满足A2+2A=O。已知A的秩r(A)=2。(Ⅰ)求A的全部特征值;(Ⅱ)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明二次型f在正交变化下的标准形为2y12+y22。
设齐次线性方程组其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
设矩阵A=,且秩(A)=3,则k=_________。
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
(2004年)设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρXY;(Ⅲ)Z=X2+Y2的概率分布。
(2007年)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于的概率为______。
(2004年)设随机变量X服从正态分布N(0,1),对给定的a∈(0,1),数ua满足P{x>ua)=a,若P{|X|<x}=a,则x等于()
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x),f2(x)是连续函数,则必为概率密度的是()
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:绝对收敛.
随机试题
以下哪一条不是抽动症状的共同特点
下肢静脉曲张的早期症状是()。
高女士,20岁。高热、鼻出血l周。体检:扁桃体肿大、表面覆盖脓苔,肝脾不大。实验室检查:外周血全血细胞减少。患者情绪烦躁,经常在父母面前哭泣,诉说自己“近几日常做噩梦”。医疗诊断最可能是
社会主义核心价值体系所包含的内容有()。
幼儿园应和()密切联系,互相配合,注意两个阶段教育的相互衔接。
社会主义法治理念反映和指引着社会主义法治的性质、功能、目标方向、价值取向和实现途径,是社会主义法治的精髓和灵魂,其基本内涵包括依法治国、执法为民和()。
下列关于刑法的适用范围的说法中,正确的是()。
假如你是一名小学老师,某日带领30多个小学生到外地开展参观革命胜地的活动,途中,有10多个孩子出现了高烧、咳嗽等症状,也有人怀疑是甲流,这时,你该如何处理?
沂源:苹果:水果
Ioncehadafriendthatwas【B1】______withterminalcancer,andthenewsthathemightonlyliveuptosixmonthswasagreats
最新回复
(
0
)