首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,已知线性方程组Ax=b存在两个不同的解, (Ⅰ)求λ,a; (Ⅱ)求方程组Ax=b的通解。
设A=,已知线性方程组Ax=b存在两个不同的解, (Ⅰ)求λ,a; (Ⅱ)求方程组Ax=b的通解。
admin
2018-04-18
87
问题
设A=
,已知线性方程组Ax=b存在两个不同的解,
(Ⅰ)求λ,a;
(Ⅱ)求方程组Ax=b的通解。
选项
答案
(Ⅰ)方法一:已知Ax=b有两个不同的解,故r(A)=[*]<3,对增广矩阵进行初等行变换,得 [*] 可知1一λ
2
=0或λ一1=0,也即λ=1或λ=一1。 当λ=1时,[*],故Ax=b无解(舍去)。 当λ=一1时,[*]<3,所以a=一2。 故λ=一1,a=一2。 方法二:已知Ax=b有两个不同的解,故r(A)=[*]<3,因此|A|=0,即 |A|=[*]=(λ一1)
2
(λ+1)=0, 解得λ=1或λ=一1。 当λ=1时,r(A)=1≠[*]=2,此时,Ax=b无解,因此λ=一1。由r(A)=[*],得a=一2。 (Ⅱ)对增广矩阵作初等行变换,即 [*] 可知原方程组等价为[*]写成向量的形式,即 (x
1
,x
2
,x
3
)
T
=k(1,0,1)
T
+([*],0)
T
, 因此Ax=b的通解为 x=k(1,0,1)
T
+([*],0),其中k为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/upX4777K
0
考研数学三
相关试题推荐
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(—1)ln(1+x2)低阶的无穷小,则正整数n等于()
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f’(x)在区间[a,b]上连续!),则对于任何满足min{f’(A),f’(B)}≤μ≤max{f’(A),f’(B)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
设方程+(a+sin2x)y=0的全部解均以,π为周期,则常数a=________.
设需求函数为P=a-bQ,总成本函数为C=Q3-7Q2+100Q+50,其中a,b>0为待定的常数,已知当边际收益MR=67,且需求价格弹性Ep=时,总利润是最大的.求总利润最大时的产量,并确定a,b的值.
一商家销售某种商品的价格满足关系P=7-0.2x(万元/单位),x为销售量,成本函数为C=3x+1(万元),其中x服从正态分布N(5p,1),每销售一单位商品,政府要征税t万元,求该商家获得最大期望利润时的销售量.
设曲线y=ax3+bx2+cx+d经过(-2,44),x=-2为驻点,(1,-10)为拐点,则a,b,c,d的值分别为_________.
设线性无关的函数y1(x),y2(x),y3(x)均是方程yˊˊ+p(x)yˊ+q(x)y=f(x)的解C1,C2是任意常数,则该方程的通解是()
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:(1)使用的最初150小时内,至少有两个电子管被烧坏的概率;(2)在使用的最初150小时内烧坏的电子管数y的分布律;(3)Y的分布函数.
随机试题
超声确诊早孕的时间为
A.生理需要B.安全需要C.爱与归属的需要D.自尊的需要E.自我实现的需要患者,男,52岁。教师,因胃溃疡出血住院。在疾病恢复期,要求同事帮忙把自己的专业书带来,以便备课,此需要属于
下列抗恶性肿瘤药物中,属于S期特异性药物的是
下列细菌芽孢最显著的特性是
该患者此时的状况应为在该患者的后续治疗中,哪项治疗措施是最重要的
我国古代收方最多的方书为()。
增值税一般纳税人的下列行为,经税务机关责令限期改正而仍未改正者,不得领购开具增值税专用发票的有()。
不计入工资总额的是()。
某二叉树共有13个结点,其中有4个度为1的结点,则叶子结点数为
TheWesthasbeguntotakemorenoticeoftheEast.Thefifth【C1】______ofanenormous【C2】______reassessingtheChinesecontr
最新回复
(
0
)