首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 将β1,β2,β3由α1,α2,α3线性表示。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 将β1,β2,β3由α1,α2,α3线性表示。
admin
2019-05-11
52
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示。
将β
1
,β
2
,β
3
由α
1
,α
2
,α
3
线性表示。
选项
答案
本题等价于求三阶矩阵C,使得(β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)C。 所以 C=(α
1
,α
2
,α
3
)
—1
(β
1
,β
2
,β
3
) [*] 因此 (β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)[*] 所以 β
1
=2α
1
+4α
2
一α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
—2α
3
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9yV4777K
0
考研数学二
相关试题推荐
设a1=1,a2=2,3an+2-4an+1+an=0,n=1,2,…,求.
确定正数a,b,使得=2.
f(χ)在[-1,1]上连续,则χ=0是函数g(χ)=的().
设二次型f(χ1,χ2,χ3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=,求方程组Ax一6的通解.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,α2+α3=,则方程组AX=b的通解为_______.
设f(χ)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f’(x).
在半径为A的球中内接一正圆锥,试求圆锥的最大体积为=_______.
随机试题
简述我国政治体制改革的目标和任务。
TheBedouinpeople,atribelivinginthedesertsofArabiaandNorthernAfrica,thinkmosthighlyofpeoplewhoshowloyalty.T
A.99mTcO4-B.99mTc-(V)-DMSAC.99mTc-RBCD.99mTc-EHIDAE.99mTc-硫胶体肝胆动态显像可以用哪种显像剂
根据企业破产法律制度的规定,债权申报期限自人民法院发布受理破产申请公告之日起计算,()。
甲、乙、丙三个股东组建了A有限责任公司。后甲因为欠债,自身财产不足清偿其债务,在其债权人的请求下,法院决定强制执行甲在A公司的股权。下列说法正确的有()。
1940年3月和12月,毛泽东全面地阐述中国共产党坚持国共长期合作方针和斗争策略的重要著作有()。
聚众犯罪的形态包括()
设A="12345678",则表达式Val(Len(A,4)+Mid(A,4,2))的值为______。
Oneofthemostinterestingofallstudiesisthestudyofwordsandwordorigins.Eachlanguageis(1)_____ofseveralearlierl
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,youwillhave15minutestogooverthepassageq
最新回复
(
0
)