首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2014-07-06
80
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
.
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
.
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
.
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关,例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
呀4等价,但前者线性相关,因而不能是基础解系。故D不正确。B,C均线性相关,因此不能是基础解系,故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
~η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,义由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
且
=2≠0,知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://www.kaotiyun.com/show/9u54777K
0
考研数学一
相关试题推荐
设z=f(u)具有二阶连续导数,u=lnr,r=,满足(x2+y2),f(0)=0,f’(0)=2,求f(u)的表达式.
设函数y=y(x)满足xdy/dx-(2x2-1)y=x3,x≥1,y(1)=y0.已知存在,求y0的值,并求极限.
在约束条件C:x2+2xy+2y2-4y=0,求f(x,y)=的最大值与最小值.
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0、OM与曲线L所围成的曲边扇形面积值等于L上M0、M两点间弧长值的一半,求曲线L的方程.
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
设A为m×n矩阵,r(A)=n,则下列结论不正确的是()
当x→0时,f(x)=x-sinx+∫0xt2dt是x的k阶无穷小,则k=()。
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1线性无关的充要条件是________.
随机试题
下列权利中,属于对世权的是()
A.医师不仅要关心病人的躯体,而且要关心病人的心理;不仅要关心病人个体,而且要关心病人家属、病人后代以至关心社会B.按经济条件、身份、地位把病人分成不同等级C.内心深处的自我评价能力D.为病人、病人家属、社会减少治疗费用,减轻大病造成的经济负担E.
农民集体土地使用权根据使用类型可划分为()。
A企业投资10万元购入一台设备,无其他投资,初始期为0,预计使用年限为10年,无残值。设备投产后预计每年可获得税后经营净利润4万元,则该投资的静态投资回收期为()年。
想知道人如何感受、思考、判断,但又无法看到大脑怎样作业,大脑就成了一个无法打开的黑箱。给这个黑箱输入一个刺激,通过分析输出的变化来推测其内部工作的过程,这便是利用黑箱方法从事研究的基本逻辑。它至今在心理和行为研究中占统治性地位。其应用的极端形式是把人脑和计
假设系统中有运行的事务,若要转储全部数据库应采用(32)方式。
参数的传递可以按值传递或引用传递,也可以使用( )的将地址传递给过程或函数。
Access的“切换面板”归属的对象是()。
Somepeoplethinkthathumanneedsforfarmland,housing,andindustryaremoreimportantthansavinglandforendangeredanimal
Thedreamofpersonalisedflightisstillvividinthemindsofmanyinventors,somedevelopingcycle-poweredcraft,others【C1】_
最新回复
(
0
)