首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f’(a),f’(b)}≤μ≤maax|f’(a),f’(b)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f’(a),f’(b)}≤μ≤maax|f’(a),f’(b)}的常数μ,存在ξ∈[a,b]使得f’(ξ)
admin
2020-03-15
90
问题
证明导函数的中间值定理(达布定理):设函数f(x)在区间[a,b]上可导(注意:不要求导函数f(x)在区间[a,b]上连续!),则对于任何满足min{f
’
(a),f
’
(b)}≤μ≤maax|f
’
(a),f
’
(b)}的常数μ,存在ξ∈[a,b]使得f
’
(ξ)=μ.
选项
答案
若f
’
(a)=f
’
(b),则取ξ=a或ξ=b即可.若f
’
(a)≠f
’
(b),为了确定起见,无妨设f
’
(a)>f
’
(b)(对f
’
(a)
’(b)的情形可类似证明).当μ=f
’
(a)或μ=f
’
(b)时相应取ξ=a或ξ=b即可.从而只需证明μ介于f
’
(a)与f
’
(b)之间的情形定理的结论也成立.引入辅助函数F(x)=f(x)一μ(x一a),则F
’
(a)=f
’
(a)一μ>0,由导数的定义即得[*],从而存在x
1
∈(a,b)使得[*],于是F(x
0
)>F(a),这表明F(a)不是F(x)在[a,b]E的最大值.此外还有F
’
(b)=f
’
(b)一μ<0,同样由导数定义得[*],从而存在x
2
∈(x
1
,b)使得[*],于是F(x
2
)>F(b),这表明F(b)也不是F(x)在[a,b]上的最大值.综上所述即知必存在ξ∈(a,b)使得F(ξ)是F(x)在[a,b]上的最大值,由F(x)的可导性必有F
’
(ξ)=0即f
’
(ξ)=μ.类似可证,在相反的情形下必存在ξ∈(a,b)使得F(ξ)是F(ξ)在[a,b]上的最小值,由F(x)的可导性也有F
’
(ξ)=0即f
’
(ξ)=μ成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9gD4777K
0
考研数学三
相关试题推荐
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y},则f(xy)dxdy等于()
已知f(x,y)=,则()
设三阶矩阵A的特征值λ1=l,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。求Anβ。
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,一2)T,求A。
设f(x)=|sint|dt,证明f(x)是以π为周期的周期函数;
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设总体X的概率密度为其中θ>0是未知参数。从总体X中抽取简单随机样本X1,X2,…,Xn,记=min{X1,X2,…,Xn}。求统计量的分布函数(x)。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:求λ的最大似然估计量λ。
随机试题
(2002)Ifyouencounteranydifficultyduringyourstayinthehospital,youmayinformthemedical_____aboutyourproblems.
粉红色澄明注射剂是
下列各项中,应在“应付职工薪酬”科目贷方核算的有()。
下列各项中,属于商业银行专门信息科技管理委员会成员的是()。
定期存款在存期内如果遇到利率调整,则()。
当前我国经济发展迅速,能源供应的压力较大,这跟我国当前经济和社会发展所处的阶段不无关系。但是,不管我们处于哪个发展阶段,如果消耗能源过多,就会因此受到惩罚,面临能源匮乏、环境污染和生态破坏等困境。
1927年10月,毛泽东率领经“三湾改编”后的秋收起义部队到达井冈山,先后在宁冈、永新、茶陵、遂川等县恢复和建立了党组织,发展武装力量,开展游击战争,领导农民打土豪、分田地,建立红色政权,实行工农武装割据,创立了党领导下的第一个农村革命根据地。井冈山革命根
WelearnfromthefirsttwoparagraphsthatTheauthorthinksthattheHuttonenquiryis
Theideathatgovernmentshouldregulateintellectualpropertythroughcopyrightsandpatentsisrelativelyrecentinhumanhist
DearCarl,MariaandRobert,Iamverypleasedtoannouncethatyourprojecthaswonthisyear’sbusinessaward.Congrat
最新回复
(
0
)