首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“几何概型”是高中阶段学生的必修内容,被安排在“古典概型”内容之后学习。在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用“古典慨型”来解决了。在特定情形下,可以用“几何概型”来解决此类问题。 请完成下列任务: 设计下述习题的
“几何概型”是高中阶段学生的必修内容,被安排在“古典概型”内容之后学习。在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用“古典慨型”来解决了。在特定情形下,可以用“几何概型”来解决此类问题。 请完成下列任务: 设计下述习题的
admin
2022-08-12
70
问题
“几何概型”是高中阶段学生的必修内容,被安排在“古典概型”内容之后学习。在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用“古典慨型”来解决了。在特定情形下,可以用“几何概型”来解决此类问题。
请完成下列任务:
设计下述习题的变式题(写出答案),并总结出求解几何概型问题的步骤。
习题:在等腰直角三角形ABC中,∠B=90°,在线段AC上任取一点P,求AP<AB的概率。
选项
答案
习题变式题:在等腰直角三角形ABC中,∠B=90°,在∠ABC内作射线BP交线段AC于点P,求使得AP<AB的概率。 [*] 解题过程:在线段Ac上取一点M使得AB=AM,如图所示。 [*] 根据题意∠ABM=67.5°。 包含所有基本事件的区域D为∠ABC=90°。 假设“AP<AB”为事件A,事件A所对应的区域d为∠ABM=67.5°。 故P(D)=67.5°/90°=3/4。 解几何概型问题的步骤: ①判断该概率模型是不是几何概型: ②如果是,注意几何度量的选择; ③把实际问题中的度量关系转化成长度、面积、体积等形式; ④根据几何概型计算公式求出概率。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9dtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
习近平总书记强调,在新的长征路上,全党必须牢记,为什么人、靠什么人的问题,是检验一个政党、一个政权性质的试金石。这是因为我国国家性质的()。
中国共产党思想线路的实质和核心是()。
《义务教育思想品德课程标准(2011年版)》对教师的教学提出了一些建议,下列属于教学建议的有()。①创造性使用教材,优化教学过程②注重学生的情感体验和道德实践③采用知识性考试作为评价的唯一方式④强调与生活实际及其
社会主义思想道德建设的核心是()。
提出“泛智”教育思想,探讨“把一切事物教给一切人类的全部艺术”的教育家是()。
《普通高中思想政治课程标准(2017年版)》的实施,要求思想政治课同绕议题,设计活动型学科课程教学。议题举足轻重,议题教学,是基于我国思想政治课程教育教学的广泛实践和积极应对现实政治课教学问题的一项理论创新,是对传统教学方式的创新与发展,教师根据教学实际与
城乡一体化有利于创造绎济的最大增长空间,拉动农牧区居民的消费需求和投资要求,避免“农村病”和“城市病”,保障经济社会的可持续发展。由此可见,推动城乡发展一体化是()。①我国有效扩大内需的根本方略②提高生产力和综合国力的战略支撑
初中数学“分式”包括三方面教学内容:分式、分式的运算、分式方程。针对上述内容,请完成下列任务:(1)分析“分数”在分式教学中的作用。(2)设计三道分式方程题。(要求:①分式方程能转化成一元一次方程;②三道分式方程题逻
曲线y=x3+2x-1在点(1,2)处的切线方程为()。
已知函数f(x)=x-alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1f(1))处的切线方程;(2)求函数f(x)的极值。
随机试题
光镜下,肉芽组织内可见
心动周期中,心室血液充盈的主要机制是
患者,男性,80岁,2型糖尿病16年,平素服用格列本脲或格列齐特,每日3次,每次1片。近日少食,不愿意运动,表情淡漠。家人依然按时给予服用上述药物。今日昏迷急诊。此患者的诊断可能为A.高渗性非酮症昏迷B.低血糖性昏迷C.脑梗死D.脑出血E.老年
单机结构不能进行分布式处理,仅适用于数据输入量小的企业。()
子公司与少数股东之间发生的影响现金流量的业务包括()。
以下关于远期市场和期货市场描述中,不正确的是()。
【2015河北石家庄】在我围,中小学课程主要由()组成。
某研究者为研究青少年孤独感和心理健康之间的关系,使用孤独感量表和SCL一90调查了400名被试。对此应使用哪种相关方法?()
下列命令执行后的结果是【】。STORE"GOODBYE!"TOX?LEFT(X,2),SUBSTR(X,6,2)+SUBSTR(X,6),RIGHT(X,3)
Thepsychologistssuggestthatstudentsshouldspendtheirtimestudyinginsteadofgettinginvolvedinunhealthyactivities.
最新回复
(
0
)