首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型 记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A-1;
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型 记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A-1;
admin
2021-11-09
65
问题
设A为n阶实对称矩阵,r(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型
记x=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
选项
答案
二次型f(x
1
,x
2
,…,x
n
)的矩阵形式为 [*] 因r(A)=n,故A可逆,且 [*] 由 (A
-1
)
T
=(A
T
)
-1
=A
-1
知A
-1
也是实对称矩阵,因此二次型f(x)的矩阵为A
-1
.
解析
本题主要考查二次型的基本理论.首先求出二次型f(x)的矩阵,并证明该矩阵为A
-1
,且为对称矩阵.然后证明矩阵A与A
-1
合同.
转载请注明原文地址:https://www.kaotiyun.com/show/9My4777K
0
考研数学二
相关试题推荐
=_______.
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
求微分方程y〞+y′2=1满足y(0)=y′(0)=0的特解.
证明:方程lnχ=在(0,+∞)内有且仅有两个根.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.B=(α1,α2,α3),求Bx=b的通解;
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-l,2,0)T,则β能否由α1,α2,α3线性表示?为什么?
函数f(x)在x=1处可导的充分必要条件是().
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
求下列极限,能直接使用洛必达法则的是[].
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
随机试题
下列措施中,与统筹山水林田湖草系统治理有关的是()。①着力改善人居环境②推进高标准农田建设③推进大规模国土绿化行动④推进森林城市、森林乡村建设
(2004)道路中心标高一般比地块的规划高程至少()。
商用房贷款,贷后检查的主要方面包括()。
一些客源国在长期历史发展过程中形成各国特有的风俗和禁忌等。忌说“恭喜发财”之类的话,视紫色与黑色为不吉利的颜色,这是()人民的禁忌。
西班牙的三大特色小吃分别是()。
下列属于人本主义心理学的观点是()
耍特权、态度恶劣、刁难辱骂群众,侵犯公民合法权益的人民警察应予辞退。()
胰岛素对外周组织摄取葡萄糖的作用是()
A组任选一题,论述字数在600字左右简要论述艺术的民族性和世界性的关系。
社会主义道德建设的重点是
最新回复
(
0
)