首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是N阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
已知A是N阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
admin
2015-08-14
60
问题
已知A是N阶矩阵,α
1
,α
2
,…,α
s
是n维线性无关向量组,若Aα
1
,Aα
2
,…,Aα
s
线性相关,证明:A不可逆.
选项
答案
因Aα
1
,Aα
2
,…,Aα
s
线性相关,故存在不全为零的数k
1
,k
2
,…,k
s
,使得 k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0, 即 A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=Aξ=0.其中ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
成立,因已知α
1
,α
2
,…,α
s
线性无关,对任意不全为零的k
1
,k
2
,…,k
s
,有 ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0, 而 Aξ=0. 说明线性方程组AX=0有非零解,从而|A|=0,A是不可逆矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9M34777K
0
考研数学二
相关试题推荐
幂级数的收敛域为()。
设P=Q为三阶非零矩阵,且PQ=0,则().
设矩阵A、B满足关系式AB=A+2B,其中,求B.
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
设平面区域D由直线x=1,x-y=2与曲线y=围成,f(x,y)是D上的连续函数,则下列选项中的是().
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:∫01f(x)dx=1/2∫01x2f"(x)dx;
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),满足f(x+y)=f(x)ey+f(y)ex,f’(0)=a≠0.证明:对任意x∈(-∞,+∞),f’(x)存在,并求f(x).
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
若f(x)在x=0点连续,且f(x+y)=f(x)+f(y)对任意的x、y∈(-∞,+∞)都成立,试证明f(x)为(-∞,+∞)上的连续函数。
求∫arcsinxarccosxdx.
随机试题
在Word中,根据工作需要可以创建自己的工具栏,创建时使用的“自定义”命令在()菜单下。
A.桃仁B.银花C.肉桂D.当归E.薏苡仁
喘证的病变部位在
下列哪些情况,人民法院应裁定终结公示催告程序?()
建设工程勘察合同当事人包括发包人和勘察人。发包人通常可能是()。
【案例三】背景材料:某大型工程采用公开招标方式,承包工作范围包括土建、机电安装和装修工程。根据图纸计算,报价为15000万元,总工期为30个月,其中基础工程估价为2000万元,工期为8个月;上部结构工程估价为7000万元,工期为15个月
抓铲挖掘机的挖土特点是()。
灭火器维修由具有灭火器维修能力(从业资质)的企业进行。下列关于灭火器维修的叙述中,正确的有()
承载信息量的基本信号单位是
Thefirstparagraphisintendedto______.Advertisementsareaimedatpeoplesufferingfrommildcomplaintsbecause______.
最新回复
(
0
)