首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×s矩阵,秩r(A)=n,证明齐次方程组ABχ=0与Bχ=0同解.
设A是m×n矩阵,B是n×s矩阵,秩r(A)=n,证明齐次方程组ABχ=0与Bχ=0同解.
admin
2018-06-12
63
问题
设A是m×n矩阵,B是n×s矩阵,秩r(A)=n,证明齐次方程组ABχ=0与Bχ=0同解.
选项
答案
设α是齐次方程组Bχ=0的解,则Bα=0.那么ABα=A(Bα)=A0=0,即α是方程组ABχ=0的解. 若α是齐次方程组ABχ=0的解,则ABα=0,那么Bα是齐次方程组Aχ=0的解.因为秩r(A)=n,所以Aχ=0只有0解.故Bα=0.从而α是齐次方程组Bχ=0的解. 因此ABχ=0与Bχ=0同解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8Ug4777K
0
考研数学一
相关试题推荐
已知方程组(Ⅰ)(Ⅱ)χ+5χ=0,那么(Ⅰ)与(Ⅱ)的公共解是_______.
线性方程组,有解,则未知量a=_______.
设方程组(1)与方程(2)χ1+2χ2+χ3=a-1有公共解,求a的值及所有公共解.
设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组Aχ=b的通勰χ=()
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3,α4,求线性方程组AX=β的通解.
设函数f(x)在(a,b)内存在二阶导数,且f’’(x)<0.试证:若x1,x2,…,xn∈(a,b),且xi<xi+1(i=1,2,…,,n-1),则其中常数ki>0(i=1,2,…,n)且
求不定积分
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率a.
求解初值问题
随机试题
The______estimateofgainsingrossnationalproductsuggestedagradualrecoveryfromeconomicrecession.
为了确定路基填土的最大干密度和最佳含水量,应做( )试验。
某分部工程双代号时标网络计划如下图所示,其中工作F的总时差和自由时差()天。
房地产要素测量主要包括()。
作为票据发票人的企业被宣告破产后,付款人不知其破产事实而付款的,因此产生的债权为破产债权。()
【2010.福建】简述思维过程中影响问题解决的因素。
清朝的灭亡给中国带来了一个真正的时代,社会震荡,世事忙乱,人们也没有心思去品咂一下这次历史变更的苦涩原味,匆匆忙忙赶路去了。直到1927年6月1日,大学者王国维先生在颐和园投水而死,才让全国的有心人肃然深思。王国维先生的死因众说纷纭,我们且不管它,
对犯罪分子违法所得的财物,下列做法不正确的是()。
定义了二维数组B(2t06,4),则该数组的元素个数为______。
【B1】【B7】
最新回复
(
0
)