首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Am×n,r(A)=m,Bn×(n-m),r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
admin
2015-08-17
58
问题
设A
m×n
,r(A)=m,B
n×(n-m)
,r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
选项
答案
将B按列分块,设B=[β
1
β
2
……β
n-m
],因已知AB=O,故知B的每一列均是AX=0的解,由r(A)=m,r(B)=n一m知,β
1
β
2
……β
n-m
是AX=0的基础解系.若η是AX=0的解向量,则η可由基础解系β
1
β
2
……β
n-m
线性表出,且表出法唯一,即[*]即存在唯一的ξ,使Bξ=η.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8Qw4777K
0
考研数学一
相关试题推荐
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)=f(ξ)=f(2)-2f(1).
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设f(x)在[0,2a]上连续,其中a>0,f(0)=f(2a).证明:方程f(x)=f(x+a)在[0,a]上至少有一个根.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设A为n阶实对称可逆矩阵f(χ1,χ2,…,χN)=.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
随机试题
以下有关网页设计布局的说法中正确的是______________。
连舌本散舌下的经脉是( )
属于小肠部分的是
建筑内给水系统由()组成。
下列符合金融创新原则的是()。
甲、乙两只股票组成投资组合,甲、乙两只股票的β系数分别为0.80和1.45,该组合中两只股票的投资比例分别为55%和45%,则该组合的β系数为()。
以下符合车船税政策规定的是()。
公安工作的成败,公安队伍战斗力的强弱,取决于()
设f(x)=在区间(0,4)内某点a处的导数f’(a)不存在,则必有
设f(x)为连续函数,I=tf(tx)dx,其中t>0,s>0,则I的值
最新回复
(
0
)