首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1989年)设两函数f(χ)和g(χ)都在χ=a处取得极大值,则函数F(χ)=f(χ)g(χ)在χ=a处 【 】
(1989年)设两函数f(χ)和g(χ)都在χ=a处取得极大值,则函数F(χ)=f(χ)g(χ)在χ=a处 【 】
admin
2016-05-30
82
问题
(1989年)设两函数f(χ)和g(χ)都在χ=a处取得极大值,则函数F(χ)=f(χ)g(χ)在χ=a处 【 】
选项
A、必取极大值.
B、必取极小值.
C、不可能取极值.
D、是否取极值不能确定.
答案
D
解析
本题的关键在于由题设可知在χ=a的某邻域内有f(a)≥f(χ),g(a)≥g(χ),由此能否得到g(a).f(a)≥g(χ)f(χ)或g(a)f(a)≤g(χ)f(χ),这在一般情况下是得不到此结论的.
若取f(χ)=-(χ-a)
2
,g(χ)=-(χ-a)
2
,显然f(χ)和g(χ)在χ-a处取极大值0,但f(χ)g(χ)=(χ-a)
4
在χ=a处取极小值.则A、C都不正确:若取f(χ)=1-(χ-a)
2
,g(χ)=1-(χ-a)
2
,则f(χ)和g(χ)都有极大值1,而f(χ)g(χ)=[1-(χ-a)
2
]
2
在χ-a仍有极大值1,则B也不正确,从而只有D对.
转载请注明原文地址:https://www.kaotiyun.com/show/8Et4777K
0
考研数学二
相关试题推荐
设函数f(x,y)=等于().
计算∫Lds,曲线L为球面x2+y2+z2=a2与平面y=z相交的圆周.
设fn(x)=x+x2+…+xn(n≥2).(1)证明:方程fn(x)=1有唯一的正根xn;(2)求
设f(x)二阶连续可导,且,则().
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设二阶常系数线性微分方程y″+ay′+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
利用变换x=arctant将方程cos4x(d2y/dx2)+cos2x(2-sin2x)dydx+y=tanx化为y关于t的方程,并求原方程的通解.
设f(x)在区间[a,b]上二阶可导且f″(x)≥0.证明:(b-a)f[(a+b)/2]≤∫abf(x)dx≥(b-a)/2[f(a)+f(b)].
设f(x)在x=2处连续,且[2f(3-x)-3]/(x-1)=-1,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
设f(x)在[a,b]上连续,且x→a+时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
随机试题
腹部肿块,推之不移,痛有定处者为
A.桂枝汤B.牡蛎散C.生脉散D.玉屏风散E.当归六黄汤
外国人或者无国籍人在中国进行刑事诉讼,需要委托辩护人或代理人时:()
下面不属于建筑业企业资质的是()
一单层单跨有吊车厂房,平面如图38—40(Z)所示。采用轻钢屋盖,屋架下弦标高为6.0m。变截面砖柱采用MUl0级烧结普通砖、M10级混合砂浆砌筑,砌体施工质量控制等级为B级。假定,变截面柱采用砖砌体与钢筋混凝土面层的组合砌体,其下段截面如图40所
运输的经济意义表现在()。
赤壁之战是著名以少胜多的战役。()
攀比效应是指社会经济活动中某些相关的经济变量之间或经济利益主体在利益分配方面存在的相互影响,轮番推进的现象。根据上述定义,下列属于攀比效应的是()。
在最坏情况下()。
Productionistobe______frombigcitiestothemountainousareasincaseofwar.
最新回复
(
0
)