首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2006年试题,22)已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩rA=2;(Ⅱ)求a,b的值及方程组的通解.
(2006年试题,22)已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩rA=2;(Ⅱ)求a,b的值及方程组的通解.
admin
2013-12-18
129
问题
(2006年试题,22)已知非齐次线性方程组
有3个线性无关的解.(I)证明方程组系数矩阵A的秩rA=2;(Ⅱ)求a,b的值及方程组的通解.
选项
答案
(I)用线性相关性判断秩的方法.依题意,设α
1
,α
2
,α
3
,是非齐次方程组的3个线性无关的解,则α
1
一α
2
,α
1
-α
3
是Ax=0线性无关的解.所以n—rA≥2,即rA≤2又矩阵A中有二阶子式不为0,于是rA≥2.所以秩rA=2.(Ⅱ)对增广矩阵作初等行变换,有[*]由rA=r([*])=2(已证)→a=2,b=一3又α=(2,一3,0,0)
T
是原方程组的解,η
1
=(一2,1,1,0)
T
,η
2
=(4,一5,0,1)是Ax=0的基础解系,所以原方程组的通解是[*](k
1
,k
2
为任意常数)
解析
本题考查了解线性方程组的方法,矩阵的秩和基础解系等知识点,解非齐次线性方程组,一般转化为增广矩阵的秩的问题进行求解,若rA≠r(
),则非齐次线性方程组无解;若rA=r(
)=n,则非齐次线性方程组有唯一解;若rA=r(
)
转载请注明原文地址:https://www.kaotiyun.com/show/8934777K
0
考研数学二
相关试题推荐
(2010年)设函数f(x),g(x)具有二阶导数,且g’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一个充分条件是()
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
(09年)函数f(χ)=的可去间断点的个数为【】
(2002年)设随机变量U在区间[-2,2]服从均匀分布,随机变量试求:(Ⅰ)X和Y的联合概率分布;(Ⅱ)D(X+Y)。
设随机变量X的密度函数为φ(χ),且φ(-χ)=φ(χ),F(χ)为X的分布函数,则对任意实数a,有
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
(2001年)求二重积分的值,其中D是由直线y=x,y=一1及x=1围成的平面区域.
(90年)已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(13年)设函数z=z(χ,y)由方程(χ+y)χ=χy确定,则=_______.
(2001年)设函数g(x)=∫0xf(u)du,其中f(x)=则g(x)在区间(0,2)内()
随机试题
用万用表1K?档测电容时,若指针满偏,说明()。
下列各项中属于定性决策方法的有()。
A.河豚毒B.箭毒C.阿托品D.四乙基铵E.新斯的明可造成ACh在接头间隙蓄积的是
关于健康传播的特点正确的是
A.1年B.2年C.3年D.5年药品广告批准文号有效期为()
某天一村民向公安机关报案,说在村头河边发现了一具女尸。公安机关很快获得了线索,认为甲嫌疑很大。在本案中,如果对甲适用逮捕,应当具备什么条件?()
甲产品为长江公司生产的主要产品,2015年与单位甲产品所耗直接材料成本有关的资料如下表所示:材料消耗量变动对2015年单位产品成本变动的影响为()元。
2011年4月,甲公司经过必要的内部批准程序,决定公开发行公司债券,并向国务院授权的部门报送有关文件,报送文件中涉及有关公开发行公司债券并上市的方案要点如下:(1)截止到2010年12月31日,甲公司经过审计后的财务会计资料显示:注册资本为500
房地产部门规章包括()等。
编制村镇规划,一般分为()两个阶段。
最新回复
(
0
)