首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]有连续的导数,求证: |∫abf(x)dx|+∫ab|f’(x)|dx.
设f(x)在[a,b]有连续的导数,求证: |∫abf(x)dx|+∫ab|f’(x)|dx.
admin
2018-06-27
101
问题
设f(x)在[a,b]有连续的导数,求证:
|∫
a
b
f(x)dx|+∫
a
b
|f’(x)|dx.
选项
答案
可设[*]|f(x)|=|f(x
0
)|,即证 (b-a)|f(x
0
)|≤|∫
a
b
f(x)dx|+(b-a)∫
a
b
|f’(x)|dx, 即证|∫
a
b
f(x
0
)dx|-|∫
a
b
f(x)dx|≤(b-a)∫
a
b
|f’(x)|dx. 注意|∫
a
b
f(x
0
)dx|-|∫
a
b
f(x)dx|≤|∫
a
b
[f(x
0
)-f(x)]-dx| =|∫
a
b
[∫
x
x
0
f’(t)dt]dx|≤∫
a
b
[∫
a
b
|f’(t)|dt]dx=(b-a)∫
a
b
|f’(x)|dx. 故得证.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7ik4777K
0
考研数学二
相关试题推荐
求不定积分。
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)0(x∈(0,1));
设讨论f(x)的连续性,若有间断点并指出间断点的类型;
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.写出注水过程中t时刻
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率圆方程.
设A是m×n矩阵,且方程组Ax=b有解,则
设3维向量组α1,α2线性无关,β1,β2线性无关.证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1+bα4,aα2+bα3,aα3+bα2,aα4+bα1也是Ax=0的基础解系的充分必要条件是()
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
计算ln(1+x2+y2)dxdy,;其中D:x2+y2≤1.
随机试题
油田全面开发进入稳定生产后,当含水率达到一定的数值时,油田累积产油量与累积产水量的对数呈()关系。
肾功能检查时尿液中的指标不包括下列哪项
脘腹胀满,不思饮食,呕吐恶心,嗳气吞酸,肢体沉重,怠惰嗜卧,常多自利,舌苔白腻而厚,脉缓。方剂选用
区域火灾风险的评估原则有()。
借贷记账法记账符号“借”表示()。
根据社会保险法律制度的规定,下列关于社会保险费缴纳的表述中,正确的有()。(2016年)
甲公司发生了以下几笔业务:(1)2005年2月,在股票市场上,转让A公司的股票100000股,卖出价格为16元/股,该笔股票的购入价格为12元/股。(2)2005年10月,在外汇市场上,转让100000美元,转让价为100美元兑827元
众所周知,微波辐射具有某种杀伤力。早在20世纪上半叶,研究人员就发现雷达发射的微波达到某种频率后,会使近处的人感到皮肤发热。使用这种微波能量可制造非致命性武器。但怎样的微波既使人感到疼痛,又不造成伤害,这是研究人员面临的主要问题。而这一问题在研制其他微波装
Youngpeoplealwayssufferinrecessions.Employersstop【C1】______thembecausetheyareeasiertosack.Butin【C2】______episodes
Inthe1960s,medicalresearchersThomasHolmesandRichardRahedevelopedachecklistofstressfulevents.Theyappreciatedthe
最新回复
(
0
)