首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
admin
2018-05-21
70
问题
设α
1
,α
2
,…,α
n
为n个n维向量,证明:α
1
,α
2
,…,α
n
线性无关的充分必要条件是任一n维向量总可由α
1
,α
2
,…,α
n
线性表示.
选项
答案
设α
1
,α
2
,…,α
n
线性无关,对任意的n维向量α,因为α
1
,α
2
,…,α
n
,α一定线性相关,所以α可由α
1
,α
2
,…,α
n
唯一线性表示,即任一n维向量总可由α
1
,α
2
,…,α
n
线性表示. 反之,设任一n维向量总可由α
1
,α
2
,…,α
n
线性表示, 取e
1
[*] 则e
1
,e
2
,…,e
n
可由α
1
,α
2
,…,α
n
线性表示,故α
1
,α
2
,…,α
n
的秩不小于e
1
,e
2
,…,e
n
的秩,而e
1
,e
2
,…,e
n
线性无关,所以α
1
,α
2
,…,α
n
的秩一定为n,即α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/6pr4777K
0
考研数学一
相关试题推荐
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设函数f(x)在[a,b]上连续,在(a,b)上二阶可导,且f(A)=0f(B)>0,f’+(A)<0。证明:(Ⅰ)在(a,b)内至少存在一点ξ,使得f(ξ)=0;(Ⅱ)在(a,b)内至少存在一点η,使得f"(η)>0。
设y=e3x(C1cosx+C2sinx)(C1,C2为任意常数)为某二阶常系数齐次线性微分方程的通解,则该方程为________。
设有正项级数是它的部分和(1)证明收敛;(2)判断级数是条件收敛还是绝对收敛,并给予证明.
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ).
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵P,使
设矩阵A=,已知A的特征值之和为4,且某个特征值为2.求a,b的值。
随机试题
Thenumberoftheemployeesinourcompanyis______thatintheirs.
患者,女性,36岁。发热伴有尿频、尿急、尿痛,查体:右肾区叩击痛阳性,导管和外周静脉同时抽血做血培养,均为金黄色葡萄球菌,不恰当的处理是
飞黄咨询公司根据明日标准造件厂的委托,对其遇到的技术难题进行技术指导。明日标准造件厂根据飞黄公司提供的意见进行技术改造后,未实现理想的效果。双方就此引发纠纷,下列表述正确的有:()
关于抹灰工程施工工艺的说法,正确的是()。
招股说明书中,在不影响信息披露的完整性和不致引起阅读不便的前提下,发行人可采用()的方法,对各相关部分的内容进行适当的技术处理,以避免重复,保持文字简洁。
A公司所得税税率为25%,不考虑其他纳税调整事项。2011年有关经济业务如下:(1)2011年1月3日,取得可供出售金融资产,初始投资成本为600万元,年末公允价值为700万元。(2)2011年]月6日。经股东会批准,A公司向其员工授予股票期权,年末经
滇红是云南红茶的统称,分为滇红工夫茶和()两种。[2015年北京真题]
商品:是用来交换的劳动产品。根据这一含义,下列情况属于商品的是( )。
(x2+y2)dxdy=_________.
TheHealthBenefitsofDrinkingWater—Isbottleddrinkingwaterhealthierthanfilteredtapwater?[A]Waterisakeyin
最新回复
(
0
)