首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0。记n阶矩阵A=αβT。求: (Ⅰ)A2; (Ⅱ)矩阵A的特征值和特征向量。
admin
2019-05-11
85
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0。记n阶矩阵A=αβ
T
。求:
(Ⅰ)A
2
;
(Ⅱ)矩阵A的特征值和特征向量。
选项
答案
(Ⅰ)对等式α
T
β=0两边取转置,有(α
T
β)
T
=β
T
α=0,即β
T
α=0。 利用β
T
α=0及矩阵乘法的运算法则,有 A
2
=(αβ
T
)
2
=αβ
T
αβ
T
=α(β
T
α)β
T
=α0β
T
=0αβ
T
=0, 即A
2
是n阶零矩阵。 (Ⅱ)设λ是A的任一特征值,ξ(ξ≠0)是A属于特征值λ的特征向量,即Aξ=λξ。 对上式两边左乘A得A
2
ξ=Aλξ=λ(Aξ)=λ(λξ)=λ
2
ξ,由(Ⅰ)的结果A
2
=O,得λ
2
ξ=A
2
ξ=0,因ξ≠0,故λ=0(n重根),即矩阵的全部特征值为零。 下面求A的特征向量:先将A写成矩阵形式 A=αβ
T
=[*]。 不妨设a
1
≠0,b
1
≠0,则有 [*] 于是得方程组(0E—A)x=0的同解方程组b
1
x
1
+b
2
x
2
+b
3
x
3
=0,这样基础解系所含向量个数为n一r(0E—A)=n一1。 选x
2
,…,x
n
为自由未知量,将它们的组值(b
1
,0,…,0),(0,b
1
,…,0),…,(0,0,…,b
1
)代入,可解得基础解系为 ξ
1
=(一b
2
,b
1
,0,…,0),ξ
2
=(一b
3
,0,b
1
,…,0),…,ξ
n-1
=(一b
n
,0,0,…,b
1
), 则A的属于λ=0的全部特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,其中k
1
,k
2
,…,k
n-1
为不全为零的任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/6BJ4777K
0
考研数学三
相关试题推荐
设随机变量X~F(m,m),令P=P(X≤1),q=P(X≥1),则().
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
证明:用二重积分证明.
设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.
设X,Y的概率分布为且P(XY=0)=1.(1)求(X,Y)的联合分布;(2)X,Y是否独立?
设幂级数an(x-2)n在x=6处条件收敛,则幂级数(x-2)2n的收敛半径为().
把二重积分写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设x=rcosθ,y=rsinθ,将如下直角坐标系中的累次积分化为极坐标系中的累次积分.
[2004年]设f’(x)在Ea,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是().
随机试题
长期投资现金流出量包括垫支的流动资金和()
慢性缩窄性心包炎最常见的病因是
下列建设工程项目中,必须实行工程监理的有()。
下列质量问题中,不属于施工单位在保修期内承担保修责任的有( )。
在确定借款费用暂停资本化的期间时,应当区别正常中断和非正常中断。下列各项中,属于非正常中断的有()。
随着时代的进步,新型的、民主的家庭气氛和父母子女关系正在形成,但随着孩子的自我意识逐渐增强,很多孩子对父母的教诲听不进或当作“耳边风”,家长感到家庭教育力不从心。教师应该()。
西周穆王统治时期制定的具有代表性的法典是()。(2012年单选32)
TedKennedyismentionedinthefirstparagraphtoTheauthor’sattitudetowardsthisimmigrationreformseemstobe
在长度为n的顺序表中查找一个元素,假设需要查找的元素有一半的机会在表中,并且如果元素在表中,则出现在表中每个位置上的可能性是相同的。则在平均情况下需要比较的次数大约为
A、HedidnotfightintheRevolutionmyWar.B、Hedidnotreallyexist.C、Hewasanimportanttownleader.D、Hewasnottheonly
最新回复
(
0
)