首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=x12+x22+x32+2αx1x2+2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
设二次型f=x12+x22+x32+2αx1x2+2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
admin
2021-01-25
66
问题
设二次型f=x
1
2
+x
2
2
+x
3
2
+2αx
1
x
2
+2βx
2
x
3
+2x
1
x
3
经正交交换X=PY化成f=y
2
2
+2y
3
2
,其中X=(x
1
,x
2
,x
3
)
T
和Y=(y
1
,y
2
,y
3
)
T
是3维列向量,P是3阶正交矩阵,试求常数α,β.
选项
答案
变换前后二次型的矩阵分别为 [*] 由题设条件有 P
-1
AP=P
T
AP=B 因此 |λE-A|=|λE-B| 即 [*] 得λ
3
-3λ
2
+(2-α
2
-β
2
)λ+(α-β)
2
=λ
3
-3λ
2
+2λ 解得α=β=0为所求常数.
解析
本题主要考查用正交变换化二次型为标准形的概念及相似矩阵的性质.注意,用正交变换X=PY(P为正交矩阵)化二次型f=X
T
AX(A为实对称矩阵)为标准形f=Y
T
BY(B为对角矩阵),其实质就是用正交矩阵P化实对称矩阵A为对角矩阵B,即P为满足P
-1
AP=P
T
AP=B的正交矩阵.
转载请注明原文地址:https://www.kaotiyun.com/show/5ux4777K
0
考研数学三
相关试题推荐
[2004年]设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令求X与Y的相关系数ρXY;
设λ1,λ2是n阶方阵A的两个不同特征值,x1,x2分别是属于λ1,λ2的特征向量.证明:x1+x2不是A的特征向量.
(11年)证明方程4arctanχ-χ+=0恰有两个实根.
[2012年]设二维离散型随机变量X,Y的概率分布为求P{X=2Y};
(1992年)求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2
设函数f(u)可微,且则z=f(4x2一y2)在点(1,2)处的全微分__________。
设z=xg(x+y)+yφ(xy),其中g,φ具有二阶连续导数,则
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=_______.
设向量组α1,α2,α3线性无关,且α1+aα2+43,2α1+α2-3,α2+α3线性相关,则a=______.
若连续函数满足关系式f(x)=则f(x)=()
随机试题
所有步行回家的学生都回家吃午饭,所有回家吃午饭的学生都有午睡的习惯。因此,小李不是步行回家。以下哪项最有可能是上述结论所假设的?
甲状腺单发热结节的治疗常采用
骨盆出口橫径:对角径:
产后子宫收缩乏力性出血时,采取最简单、迅速制止出血的方法是胎盘部分残留时可行
再次体液免疫的特点是
A、北葶苈子B、南葶苈子C、南葶苈子和北葶苈子D、南、北葶苈子均无E、沙苑子含蒽醌类成分的药材是()。
建设项目信息管理的()原则表现在:建设项目决策过程具有时效性,建设项目信息管理成果也具有相应的时效性。
时标网络计划图中,实际进度前锋线的标定方法主要有()。
因在旅游经营活动中因妨害国(边)境管理受到刑事处罚被列入本辖区旅游市场名单的旅游市场主体和从业人员,黑名单信息自公布之日起满()年,由列入机关自届满之日起30个工作日内移出旅游市场黑名单。
草书的代表人物有()。
最新回复
(
0
)