首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2-α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2-α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为________.
admin
2019-03-12
96
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若
β=α
1
+2α
2
-α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,
则Ax=β的通解为________.
选项
答案
[*],k
1
,k
2
∈R
解析
由β=α
1
+2α
2
-α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
可知
均为Ax=β的解,故β
1
-β
2
=
均为Ax=0的解.
由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=0有两个线性无关的解β
1
-β
2
,β
3
-β
4
,可知Ax=0的基础解系中至少含有两个向量,也即4-r(A)≥2,即r(A)≤2.
综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
-β
2
,β
2
-β
3
即为Ax=0的基础解系.故Ax=β的通解为
,k
1
,k
2
∈R.
转载请注明原文地址:https://www.kaotiyun.com/show/5rP4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X的概率密度为f(x;θ)=,则θ的最大似然估计量=_______.
设随机变量X~E(1),记Y=max(X,1),则E(Y)=
设事件A与B满足条件AB=,则
设有级数(Ⅰ)求此级数的收敛域;(Ⅱ)证明此级数的和函数y(χ)满足微分方程y〞-y=-1;(Ⅲ)求微分方程y〞-y=-1的通解,并由此确定该级数的和函数y(χ).
设z=f(u),方程u=φ(u)+∫yχp(t)dt确定是χ,y的函数,其中f(u),φ(u)可微,p(t),φ′(u)连续且φ′(u)≠1,则=().
下列矩阵中不相似于对角矩阵的是
设f(x)连续,且f(1)=0,f'(1)=2,求极限
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
求极限
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
随机试题
物流发展战略目标不包括()。
临床常用药流方法是
谈判成本包括谈判活动全过程各项物质消耗和损失的价值,即()。
重要公共建筑、高层建筑的屋面雨水排水工程与溢流设施的总排水能力不应小于()年重现期的雨水量。
某建筑消防水泵控制柜与消防水泵设置在同一房间。系统管网泄漏量测试结果为0.75L/s,高位消防水箱出水管上设置流量开关,动作流量设定值为1.75L/s。消防水泵性能和控制柜性能合格,室内外消火栓系统系统验收合格。在竣工验收三年后的日常运行中,消防水泵经常发
《民主主义与教育》的作者是()。
唯心主义在现代哲学中其基本形态是()。
下列关于公文抄送的说法,正确的有()。
A、11,706.62B、11,577.74C、11,722.98D、11,755.72B
"Doyouregretpayingfiftydollarsforthedog?""No,Iwouldgladlypay______forhim."
最新回复
(
0
)