首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)比较∫01|lnt|[ln(1+t)n]dt 与∫01tn|ln t|dt(n=1,2,…)的大小,说明理由。 (Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un。
(Ⅰ)比较∫01|lnt|[ln(1+t)n]dt 与∫01tn|ln t|dt(n=1,2,…)的大小,说明理由。 (Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un。
admin
2017-12-29
116
问题
(Ⅰ)比较∫
0
1
|lnt|[ln(1+t)
n
]dt 与∫
0
1
t
n
|ln t|dt(n=1,2,…)的大小,说明理由。
(Ⅱ)记u
n
=∫
0
1
|lnt|[ln(1+t)]
n
dt(n=1,2,…),求极限
u
n
。
选项
答案
(Ⅰ)令f(t)=ln(1+t)—t。 当0≤t≤1时,f’(t)=[*]一1≤0,故当0≤t≤1时,f(t)≤f(0) =0,即当0≤t≤1时, 0≤ln(1+t)≤t≤1,从而 [ln(1+t)]
n
≤t
n
(n=1,2,…)。 又由|lnt|≥0得 ∫
0
1
|lnt|[ln(1+t)]
n
dt≤∫
0
t
t
n
|lnt|dt(n=1,2,…)。 (Ⅱ)由(Ⅰ)知,0≤u
n
=∫
0
1
|lnt|[ln(1+t)]
n
dt≤∫
0
1
t
n
|lnt|dt,因为 ∫
0
1
t
n
|lnt|dt=—∫
0
1
t
n
(lnt)dt [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BmX4777K
0
考研数学三
相关试题推荐
当x→0时,f(x)=为x的三阶无穷小,则a,b分别为()
求极限
求极限
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(A)=f(b)=0,∫abf(x)dx=0.证明:在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
设p(x)在[a,b]上非负连续,f(x)与g(x)在a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b),比较的大小,并说明理由.
设又f(x)在点x=0处可导,求F(x)=f[φ(x)]的导数.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
求下列极限.
微分方程xy’+y=0满足初始条件y(1)=2的特解为________.
[*]根据题意,有令上式的结论中的x=1,则有
随机试题
下列哪一种疾病是以纤维素渗出为主的炎症一()
下述哪项是深入访谈的缺点
下列除哪项外,均是妊娠禁药()
引起全身性感染的局部因素中不正确的是( )
有关施工合同的订立不正确的一项是()
固定股利政策的优点有()。
农业现代化就是指农业生产现代化。()
根据《刑法》有关规定,下列情形按故意杀人罪定罪处罚的是()。
党的十八大强调,必须把科技创新摆在()
请在“答题”菜单中选择相应的命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。财务部助理小王需要向主管汇报2013年度公司差旅报销情况,现在按照如下需求完成工作:在“差旅成本分析报告”工作表B4单元格中,统
最新回复
(
0
)