首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设χOy平面上有正方形D=((χ,y)|0≤χ≤1,0≤y≤1}及直线l:χ+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
设χOy平面上有正方形D=((χ,y)|0≤χ≤1,0≤y≤1}及直线l:χ+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
admin
2017-11-09
97
问题
设χOy平面上有正方形D=((χ,y)|0≤χ≤1,0≤y≤1}及直线l:χ+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求∫
0
χ
S(t)dt(χ≥0).
选项
答案
当0≤t≤1时,S(t)=∫
0
t
(t-χ)dχ=[*]t
2
; 当1<t≤2时,S(t)=(t-1)×1+∫
t-1
1
(t-χ)dχ=-[*]t
2
+2t-1; 当t>2时,S(t)=1. 即S(t)=[*] 所以,当0≤χ≤1时,∫
0
χ
S(t)dt=[*]; 当1<χ<2时, [*] 当χ>2时,∫
0
χ
S(t)dt=∫
0
1
[*]dt+∫
1
2
(-[*]+2t-1)dt∫
2
χ
dt=χ-1. 因此,∫
0
χ
S(t)dt=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NBX4777K
0
考研数学三
相关试题推荐
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.(1)求先抽到的一份报名表是女生表的概率p;(2)设后抽到的一份报名表为男生的报名表,求先抽到的报名
设A,B同时发生,则C发生.证明:P(C)≥P(A)+P(B)-1.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(1)求方程组(I)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设有方程组AX=0与BX=0,其中A,B都是m×n矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
已知ξ=[1,1,一1]T是矩阵的一个特征向量.确定参数a,b及考对应的特征值λ;
求二重积分其中D是由曲线,直线y=2,y=x所围成的平面区域.
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
随机试题
"SubstanceAbuse"—SevereAnxietytoSocietyTechnically,anysubstanceotherthanfoodthataltersourbodilyor【W1】______fu
最能提示右心衰竭的表现是
习近平总书记在“七一讲话”中指出的更基础、更广泛、更深厚的自信是()。
在合同履行过程中,标有单价的工程量清单是承包商与业主办理()的依据。
管理会计主要是为企业内部管理服务,从这个意义上讲,管理会计又称为( )。
下列选项中,()不属于供配电系统管理工作的主要内容。
听完一节精彩的语文课,自觉投入到下一节数学课的学习中。这体现的注意品质是()。
牛顿说:“假如我能够比别人嘹望得略为远些。那是因为我站在巨人们的肩膀上。”这句话肯定了()。
七届二中全会上,毛泽东指出党的工作重心从农村转移到城市,其主要依据是()。
Iftheywerejustanotherproduct,themarketwouldworkitsusualmagic-supplywouldrespondtohighpricesandrisetomeetsu
最新回复
(
0
)