首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2022-08-19
114
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f″(x)≥0,所以有f(x)≥f(x
0
)+f′(x
0
)(x-x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1, 于是有a≤∫
a
b
xφ(x)dx=x
0
≤b. 将x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f′(x
0
)(x-x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f′(x
0
)[xφ(x)-x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5kR4777K
0
考研数学三
相关试题推荐
当x→0时,下列无穷小中,哪个是比其他三个更高阶的无穷小().
设f(x)=f(x-π)+sinx,且当x∈[0,π]时,f(x)=x,求∫π3πf(x)dx.
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明:(1)中的
计算下列二重积分:设D是由x≥0,y≥x与x2+(y-b)2≤b2,x2+(y-a)2≥a2(0<a<b)所围成的平面区域,求xydxdy.
设常数k>0,则级数().
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f’’(x)|≤M,证明:|f’(x)|≤
已知f(x,y)=设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=f(x,y)dxdy.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f”(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且φ(x)dx=1.证明:f(x)φ(x)dx≥f[xφ(x)dx].
设f(x)为连续函数,且满足f(xt)dt=f(x)+xsinx,则f(x)=_____________.
设f(x)在[0,+∞)上连续且单调增加,试证对任何b>a>0,都有下面不等式成立:
随机试题
腹股沟疝临床上常见_______。难复性疝的内容物多为_______。
适用罚款、拘留措施,人民法院应当作出
与机遇失之交臂在当今世界彩色胶片市场上,有美国柯达和日本富士两家公司在争雄。富士公司自1984年取得“第23届奥运会专用胶卷”特权后,目前以更加咄咄逼人的态势,决心与柯达争夺世界上的每一个顾客,柯达的霸主地位受到严重的挑战。而在上世纪70年代,柯
A、釉丛B、釉梭C、釉板D、釉牙本质界E、釉质的生长线起自釉牙本质界向牙表面方向散开,呈草丛状()
各样点地价的平均值评估并确定农用地基准地价,具体评估步骤?
某水利工程业主与承包商签订了工程承包合同,合同中含有两个子工程,估算工程量甲项为2300m3,乙项为3200m3;甲项单价为180元/m3,乙项单价为160元/m3。承包合同规定: (1)开工前业主应向承包商支付合同价20%的预付款。 (2
医疗事故是指医疗机构及其医务人员在医疗活动中,违反医疗卫生管理法律、行政法规、部门规章和诊疗护理规范、常规,过失造成患者人身损害的事故。根据上述定义,下列选项属于医疗事故的是:
虽然菠菜中含有丰富的钙但同时含有大量的浆草酸,浆草酸会有力地阻止人体对于钙的吸收,因此一个人要想摄入足够的钙,就必须用其他含钙丰富的食物来取代菠菜,至少和菠菜一起食用。以下哪项如果为真,最能削弱题干的论证?
Excuseme,couldyoutellmehow______gettothehospital?
Adviceto"sleeponit"couldbewellfounded,scientistssay.Afteragoodnight’ssleep,aproblemthatseemedinsurmountable(
最新回复
(
0
)