首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
admin
2019-08-12
58
问题
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g
’
(a)存在,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的( )
选项
A、充分必要条件。
B、充分非必要条件。
C、必要非充分条件。
D、非充分非必要条件。
答案
A
解析
因φ(x)在x=a处不可导,所以不能对F(x)用乘积的求导法则,需用定义求F
’
(a)。题设φ(x)以x=a为跳跃间断点,则存在
,A
+
≠A
-
。
当g(a)=0时,
下面证明若F
’
(a)存在,则g(a)=0。
反证法,若g(a)≠0,φ(x)=
,由商的求导法则,φ(x)在x=a可导,这与题设矛盾,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的充要条件。故选A。
转载请注明原文地址:https://www.kaotiyun.com/show/5SN4777K
0
考研数学二
相关试题推荐
(01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
已知齐次线性方程组其中ai≠0,试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中P=,(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
求下列微分方程的通解或在给定条件下的特解
设f(x)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,a,b为非负数,求证:c∈(0,1),有|f’(c)|≤2a+
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点M,使得L在M点处的法
设f(x1,x2,…,xn)=XTAX是正定二次型.证明:举例说明上述条件均不是f(x1,x2,…,xn)正定的充分条件.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ=0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时()
随机试题
组织文化
比较身高和体重两组数据变异度大小,宜采用
下列叙述中哪项不属于含氧药物的代谢
【背景资料】某施工单位中标新建普速铁路综合工程第1标段。主要内容有路基、桥涵、隧道、电力、电力牵引供电、通信和信号工程。部分工程情况如下:1号特大桥长580m,跨越二级航道,采用三跨预应力钢筋混凝土连续箱梁。主墩位于水深8.0~10.0
在下列各情况中,不影响会计师事务所独立性的是( )。
VBA中用实际参数m和n调用过程f(a,b)的正确形式是()。
A、 B、 C、 C(A)听到here,不要将其与“归还”混淆。(B)开头使用yes进行了肯定,但是紧接着的can与提问不符。(C)说的是现在还在我这儿,下午会归还的,所以正确。
Accordingtothespeaker,evenAmericaissufferingfromeconomicdepression,theAmericaneconomywillsoonberecoveredifAme
RisingInequalityIsHoldingBacktheU.S.Economy[A]Inannouncinghisrunforthepresidencylastmonth,JebBushhassetan
期货交易中缴纳的保证金通常为合约价值的()。[2009年11月真题]
最新回复
(
0
)