首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2018-08-02
53
问题
已知线性方程组
的一个基础解系为:(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
记方程组(Ⅰ)、(Ⅱ)的系数矩阵分别为A、B,则可以看出题给的(Ⅰ)的基础解系中的n个向量就是B的n个行向量的转置向量.因此,由(Ⅰ)的基础解系可知 AB
T
=O 转置即得BA
T
=O 因此可知A
T
的n个列向量——即A的n个行向量的转置向量都是方程组(Ⅱ)的解向量. 由于B的秩为n(B的行向量组线性无关),故(Ⅱ)的解空间的维数为2n-r(B)=2n-n=n,所以(Ⅱ)的任何n个线性无关的解就是(Ⅱ)的一个基础解系.已知(Ⅰ)的基础解系含n个向量,即2n-r(A)=n,故r(A)=n,于是可知A的n个行向量线性无关,从而它们的转置向量构成(Ⅱ)的一个基础解系,因此(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c(a
n1
,a
n2
,…,a
n,2n
)
T
其中c
1
,c
2
,…,c
n
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/c2j4777K
0
考研数学二
相关试题推荐
设抛物线y=χ2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A((a,a2)(a>0).(1)求S=S(a)的表达式;(Ⅱ)当a取何值时,面积S(a)最小?
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
证明:对任意的x,y∈R且x≠y,有
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设A,B皆为n阶矩阵,则下列结论正确的是().
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
随机试题
马克思主义认为,人的本质是( )
原裂前方的部分称为小脑前叶,在进化上出现较晚,故又称旧小脑。()
A、病变累及左颈部淋巴结区B、病变累及右侧颈、腋下和腹股沟淋巴结C、病变累及左腋下淋巴结及肝脏D、病变累及右锁骨上及左颈部淋巴结E、病变累及左颈和纵隔淋巴结及左肺限局浸润Ⅳ期淋巴瘤
A.5年B.4年C.3年D.2年E.1年第一类精神药品专用账册的保存期限应当自药品有效期满之日起不少于()
关于建筑安装工程中税金的组成的说法正确的是()
根据《建设工程文件归档整理规范》,下列工程质重验收记录中,属于建设单位永久保存的有()。
国际博览会是世界市场上进行大宗商品交易的一种特殊交易场所,是一种有组织的商品市场。
划分部门法的主要标准是()。
根据以下资料,回答下列问题。2016年北京市实现地区生产总值24899.3亿元,比上年增长6.7%。其中,第一产业增加值129.6亿元,下降8.8%;第二产业增加值4774.4亿元,增长5.6%;第三产业增加值19995.3亿元,增长7.1%。
CanDigitalTextbooksTrulyReplacethePrintKind?A)Theshortcomingsoftraditionalprinteditiontextbooksareobvious:Fors
最新回复
(
0
)