首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[1,l,1,2]T,α2=[3,a+4,2a+5,a+7]T,α3=[4,6,8,10]T,α4=[2,3,2a+3,5]T;β=[0,1,3,6]T.求: 向量组α1,α2,α3,α4的秩及一个极大线性无关组;
设向量组α1=[1,l,1,2]T,α2=[3,a+4,2a+5,a+7]T,α3=[4,6,8,10]T,α4=[2,3,2a+3,5]T;β=[0,1,3,6]T.求: 向量组α1,α2,α3,α4的秩及一个极大线性无关组;
admin
2021-07-27
16
问题
设向量组α
1
=[1,l,1,2]
T
,α
2
=[3,a+4,2a+5,a+7]
T
,α
3
=[4,6,8,10]
T
,α
4
=[2,3,2a+3,5]
T
;β=[0,1,3,6]
T
.求:
向量组α
1
,α
2
,α
3
,α
4
的秩及一个极大线性无关组;
选项
答案
记A=[A|β]=[α
1
,α
2
,α
3
,α
4
|β].对A作初等行变换,有[*]当a≠1/2时,r(α
1
,α
2
,α
3
,α
4
)=r(A)=3,且α
1
,α
3
,α
4
线性无关,故α
1
,α
3
,α
4
是一个极大线性无关组.当a=1/2时,r(α
1
,α
2
,α
3
,α
4
)=r(A)=2,且α
1
,α
3
线性无关,故α
1
,α
3
是一个极大线性无关组。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5Qy4777K
0
考研数学二
相关试题推荐
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
设A为n阶可逆矩阵,A*是A的伴随矩阵,则
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式Iα3,α2,α1,β1+β2等于()
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
设非齐次线性方程组Ax=b有两个不同解β1和β2,其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Ax=b的通解为
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
下列有关热的一些说法中错误的是()
碘缺乏病,例如甲状腺肿及痴呆、矮小等为特征的机体异常表现。预防其发生最方便和最有效的方法是
下列哪种急性出疹性传染病发热3一4天后,疹出热势增高,疹退热度同时下降
下列哪项试验室检查符合肝细胞性黄疸的诊断
个体诊所向患者超范围提供药品的未经批准医疗机构擅自使用其他医疗机构配制的制剂的
石灰稳定土基层与水泥稳定土基层施工宜在春末和()施工。
发行可转换公司债券后,因( )引起上市公司股份变动的,应当同时调整转股价格。
股票带给持有者的现金流入包括()。
________的制定是在高校总的培养目标指导下根据各自的专业定向进行的。
A.Basedonthesurveyreport,theywilllodgeaclaimforcompensationB.ifyouhaveagoodcommandofbothwrittenandspokenE
最新回复
(
0
)