首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln2x+2klnx一1)≥0.
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln2x+2klnx一1)≥0.
admin
2019-08-01
117
问题
[2018年] 已知常数k≥ln2—1,证明:(x一1)(x—ln
2
x+2klnx一1)≥0.
选项
答案
①当x=1时,不等式成立. ②当0<x<1时,只需在x—ln
2
x+2klnx一1≤0. 设f(x)=x—ln
2
x+2klnx一1,则有 f′(x)=1—2lnx·[*] 令g(x)=x—2lnx+2k,则g′(x)=l一[*]<0,故g(x)单调递减,所以 g(x)>g(1)=1+2k≥1+2(ln2—1)=2ln2-1>0, 从而f′(x)>0,f(x)单调递增,故f(x)≤f(1)=0,结论成立. ③当x>1时,只需证x-ln
2
x+2klnx一1≥1. 由②可知,当1<x<2时,g′(x)=1-[*]<0,则g(x)单调递减; 当x>2时,g′(x)>0,则g(x)单调递增.所以 g(x)≥g(2)=2+2k一2ln2≥2+2(ln2—1)一2ln2=0, 可知f′(x)≥0,f(x)单调增加,则f(x)≥f(1)=0,故结论成立. 综上所述,不等式恒成立,结论得证.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5PN4777K
0
考研数学二
相关试题推荐
设f(x)=3x2+Ax-3(x>0).A为正常数,问A至少为多少时f(x)≥20?
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:
求函数的反函数.
没u=f(x,y,xyz),函数z=z(x,y)由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求
求由方程x2+y2-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
计算二重积分(x0+4x+y0)dxdy,其中D是曲线(x0+y0)0=a0(x0-y0)围成的区域.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和术速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
求数列极限xn,其中xn=
一容器在开始时盛有盐水100升,其中含净盐10千克,然后以每分钟2升的速率注入清水,同时又以每分钟2升的速率将含盐均匀的盐水放出,并设容器中装有搅拌器使容器中的溶液总保持均匀.求经过多少分钟,容器内含盐的浓度为初始浓度的一半?
随机试题
思维的两大特点是指【】
鼻旁窦炎引起的头痛,何时最明显
患者早秋外感,症见身热不甚,干咳无痰,咽干口渴,右脉数大。治疗应首选
天麻苷属苦杏仁苷属
核桃仁的功效是
选定文本可用下列操作的有()。
汉地俗称“黄教”的藏传佛教教派指的是()。
以下哪一项不属于影响幼儿创造性的因素?()
发现学习就是有意义学习。()
Whywasthewomankeptwaitingsolong?
最新回复
(
0
)