首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTAx的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
已知三元二次型xTAx的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
admin
2019-06-25
93
问题
已知三元二次型x
T
Ax的平方项系数都为0,α=(1,2,一1)
T
满足Aα=2α.
①求x
T
Ax的表达式.
②求作正交变换x=Qy,把x
T
Ax化为标准二次型.
选项
答案
①设[*]则条件Aα=2α即 [*] 得2a一b=2,a一c=4,b+2c=一2,解出a=b=2,c=一2. 此二次型为4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. ②先求A特征值 [*] 于是A的特征值就是2,2,一4. 再求单位正交特征向量组 属于2的特征向量是(A一2E)x=0的非零解. [*] 得(A一2E)x=0的同解方程组:x
1
一x
2
一x
3
=0. 显然β
1
=(1,1,0)
T
是一个解,设第二个解为β
2
=(1,一1,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化: [*] 属于一4的特征向量是(A+4E)x=0的非零解. 求出β
3
=(1,一1,一1)
T
是一个解,单位化: [*] 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,一4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
-1
AQ是对角矩阵,对角线上的元素为2,2,一4. 作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
—4y
3
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5GJ4777K
0
考研数学三
相关试题推荐
设在x>0处,f(x)连续且严格单调增,并设F(x)=∫0x(2t—x)f(t)dt,则F(x)在x>0时()
设平面区域D用极坐标表示为
(Ⅰ)求定积分an=∫02x(2x—x2)ndx,n=1,2,…;(Ⅱ)对于(Ⅰ)中的an,求幂级数anxn的收敛半径及收敛区间.
设A=,且已知A相似于B,则b=___________.
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().(B)nS2~χ2(n)
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x一3e2x为特解,求该微分方程.
设y"一3y′+ay=一5e-x的特解形式为Axe-x,则其通解为___________.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又且AB=O.求矩阵A.
设A为可逆的实对称矩阵,则二次型XTAX与XTA-1X().
二阶微分方程y”=e2y满足条件y(0)=0,y’(0)=1的特解是y=_______.
随机试题
以下有关大陆法与英美法的说法中,正确的是()
急性脑血管疾病包括
张某通过房产经纪公司购买王某一套住房并办理了转让登记手续,后王某以房屋买卖合同无效为由,向法院起诉要求撤销登记行为。行政诉讼过程中,王某又以张某为被告就房屋买卖合同的效力提起民事诉讼。下列选项正确的是:()
工程监理人员发现工程设计不符合建筑工程质量标准的,应当:(2019年第18题)
在中国,“米开朗基罗”像是一个西方艺术史上的__________,几乎无人不知,一般观光客去意大利旅游都会选择去西斯廷教堂__________出现在艺术启蒙读物中的“创世纪”,大约也正因为如此,年初上海一家美术馆开馆展便是米开朗基罗大展,尽管被吐槽展出作品
根据下列材料回答问题。2011年,民航行业完成运输总周转量577.44亿吨公里,比上年增长7.2%。其中旅客周转量403.53亿吨公里,增长12.2%;货邮周转量173.91亿吨公里。2011年,国内航线完成运输周转量380.61亿吨公里,
资本管理的核心是()。
设A=(α1,α2,α3)为三阶矩阵,且|A|=3,则|α1+2α2,α2一3α3,α3+2α1|=__________.
Thefollowingparagraphsaregiveninawrongorder.ForQuestions41-45,youarerequiredtoreorganizetheseparagraphsintoa
Wecanacceptyourorderoncondition______(你们提前付款).
最新回复
(
0
)