首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下4个命题,正确的个数为 ( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞(x)dx=0; ②设f(x)在(一∞,+∞)上连续, ③若∫-∞+∞f(x)dx与∫-∞+∞g(x)dx都发散,则
以下4个命题,正确的个数为 ( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞(x)dx=0; ②设f(x)在(一∞,+∞)上连续, ③若∫-∞+∞f(x)dx与∫-∞+∞g(x)dx都发散,则
admin
2017-05-16
66
问题
以下4个命题,正确的个数为 ( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
(x)dx=0;
②设f(x)在(一∞,+∞)上连续,
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
[f(x)+g(x)]dx未必发散;
④若∫
-∞
+∞
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散.
选项
A、1个
B、2个
C、3个
D、4个
答案
A
解析
∫
-∞
+∞
f(x)dx收敛 存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时 ∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx.设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
但是 ∫
-∞
0
f(x)dx=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题.
设f(x)=x,g(x)=一x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
(f(x)+g(x))dx收敛,这表明命题③是真命题.故应选(A).
转载请注明原文地址:https://www.kaotiyun.com/show/4wt4777K
0
考研数学二
相关试题推荐
设f(x)=sinx-∫0x(x-t)f(t)dt,其中f为连续函数,求f(x).
微分方程y"-y=ex+1的一个特解应具有形式(式中a,b为常数)________。
差分方程yt+1-yt=t2t的通解为________。
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=________.
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设在点x=1处可导,求a,b的值.
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设f(x)在[0,+∞)上连续且单调增加,试证对任何b>a>0,都有下面不等式成立:
随机试题
固定子宫颈以维持子宫正常位置的韧带是
女性,36岁。反复头痛、流脓鼻涕1年余,耳鼻喉科诊断为慢性鼻窦炎。该患者头痛的特点是
女,50岁。上腹痛3个月余,2个月前钡剂造影检查提示胃窦后壁溃疡,经抗酸药物治疗近8周,疼痛曾一过性缓解。进一步处理应首选
一定量理想气体由初态(p1,V1,T1)经等温膨胀到达终态(p2,V2,T2),则气体吸收的热量Q为()。
易燃液体应储存于阴凉通风库房,仓库温度一般不超过________。()
函数y=x2一2x在区间[2,3]上的最大值是()。
下列关于生活常识的说法正确的是()。
在IP交换技术中,一台IP交换机由(120)三部分组成。IP交换机为每一个物理连接建立一个默认的(121),相邻的IP交换机通过这些默认通信交换路由信息和数据分组,为了进行第三层的路由选择,IP交换控制器必须根据(122)等信息对网络数据流进行分类并加上数
以下不构成无限循环的语句或语句组是
Forthispart,youareallowed30minutestowriteaLetter.Youshouldwriteatleast120wordsfollowingtheoutlinegivenbel
最新回复
(
0
)