首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ,η∈(a,b),使eη-ξ[f(η)+f’(η)]=1。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ,η∈(a,b),使eη-ξ[f(η)+f’(η)]=1。
admin
2019-01-15
84
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ,η∈(a,b),使e
η-ξ
[f(η)+f
’
(η)]=1。
选项
答案
构造辅助函数g(x)=e
x
,则g(x)在[a,b]上连续,在(a,b)内可导。由拉格朗日中值定理,至少存在一点ξ∈(a,b),使得[*]。 另作辅助函数F(x)=e
x
f(x),F(x)在[a,b]连续,(a,b)内可导,由拉格朗日中值定理得,至少存在一点η∈(a,b),使得[*],即 [*] 从而有e
η
[f(η)+f
’
(η)]=e
ξ
。即e
η-ξ
[f(η)+f
’
(η)]=1。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4EP4777K
0
考研数学三
相关试题推荐
(10年)设随机变量X的分布函数F(χ)=,则P{X=1)=【】
(14年)设p(χ)=a+bχ+cχ2+dχ3.当χ→0时,若p(χ)-tanχ是比χ3高阶的无穷小,则下列结论中错误的是【】
(88年)已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解.
设B是元素全都为1的n阶方阵(n>1).证明:(E-B)-1=E-B.
设A为n阶非零方阵,且存在某正整数m,使Am=O.求A的特征值并证明A不与对角矩阵相似.
设函数f(x)连续.(1)求初值问题的解y(x),其中a是正常数.(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤(1一e—ax).
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得∫01f(x)dx=0.
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令F(x)=其中选常数C0,使得F(x)在x=c处连续.就下列情形回答F(x)是否是f(
随机试题
脑血栓形成患者服用阿司匹林治疗,其目的是
关于国家食品安全风险监测制度,下列哪些表述是正确的?(2009年试卷一第67题)
以下竖井施工的规定中,正确的是()。
在进口设备交货类别中,买方承担风险最大的交货方式是()。
在工程量清单计价规范模式下,投标必须计算的基础单价包括()。
关键质量特性是指若超过规定要求,会造成产品_______的质量特性。
乡级以上人民政府公安机关,为预防和制止严重危害社会治安秩序的行为,可在一定的区域和时间,限制人员、车辆的通行或停留,必要时可以采取相应的交通管制措施。()
A、 B、 C、 D、 C
在牛顿经典力学问世后的200多年时间里,许多科学家认为,整个宇宙都要服从这一“永恒定律”。20世纪初,爱因斯坦发现牛顿的运动定律只有在宏观低速的情况下才是正确的,牛顿力学的“永恒定律”神话被打破。这启示我们()。
The most accurate and most boring way to(105)Java is that it is a new computer programming language developed by Sun Microsystem
最新回复
(
0
)