首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续. (1)求初值问题的解y(x),其中a是正常数. (2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤(1一e—ax).
设函数f(x)连续. (1)求初值问题的解y(x),其中a是正常数. (2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤(1一e—ax).
admin
2017-07-26
134
问题
设函数f(x)连续.
(1)求初值问题
的解y(x),其中a是正常数.
(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤
(1一e
—ax
).
选项
答案
(1)根据一阶非齐次线性微分方程的通解公式,得 y(x)=e
—ax
[∫f(x)e
∫adx
dx+c]=e
—ax
[F(x)+c], 其中c为任意常数,F(x)=∫f(x)e
ax
dx. 因为y(0)=0,得c=一F(0).于是, y(x)=e
—ax
[F(x)一F(0)]=e
—ax
f(t)e
at
dt. (2)由(1)问的结果,易知 |y(x)|≤e
—ax
∫
0
x
|f(x)|e
at
dt≤ke
—ax
∫
0
x
e
at
dt=[*](1一e
—ax
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kuH4777K
0
考研数学三
相关试题推荐
甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为_____.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
函数f(u,v)由关系式f(xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则________.
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x,y≤1}。
求不定积分.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,an=一1nf(x)dx(n=1,2,…).证明:证存在;
随机试题
关于足部按摩,下列选项中错误的是()。
________年,毛泽东等人听取了国务院多部门的工作汇报,经过深入调查研究,于5月份在最高国务会议上作了《论十大关系》的报告。()
本周蛋白阳性可见于的疾病,但除外
该病人的中医诊断是:该病的首选方药是:
下列有关历史文化名城的概念,理解不正确的是()。
从某一个系统的产生、运转、维护、消亡的生存发展进程上看,消防安全管理活动具有()的特征。如某一个厂房的生产系统,从计划、设计、制造、储存、运输、安装、使用、保养、维修直到报废消亡的整个过程中,都应该实施有效的消防安全管理活动。
下列项目中,不应记入“管理费用”科目的有()。
新民主主义的政治和经济,必须要有与之相适应的新民主主义文化。对新民主主义文化纲领的正确理解是()。
男性,65岁。阑尾穿孔切除术后8小时下腹部胀痛,躁动不安,未解小便。首先应想到的原因是
试述法律与道德的冲突。要求:观点明确,说理充分,条理清晰,语言规范、流畅。
最新回复
(
0
)