首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是( ).
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是( ).
admin
2022-04-02
65
问题
若向量组α
1
,α
2
,α
3
,α
4
线性相关,且向量α
4
不可由向量组α
1
,α
2
,α
3
线性表示,则下列结论正确的是( ).
选项
A、α
1
,α
2
,α
3
线性无关
B、α
1
,α
2
,α
3
线性相关
C、α
1
,α
2
,α
4
线性无关
D、α
1
,α
2
,α
4
线性相关
答案
B
解析
若α
1
,α
2
,α
3
线性无关,因为α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
4
线性无关,矛盾,故α
1
,α
2
,α
3
线性相关,选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/42R4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且.证明:存在ξ∈(0,2),使得f’’’(ξ)=9.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得fˊ(η)fˊ(ζ)=1.
与矩阵A=合同的矩阵是()
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设A是n阶实对称矩阵,证明:(1)存在实数c,使对一切X∈Rn,有|χTAχ|≤cχTχ.(2)必可找到一个数a,使A+aE为对称正定矩阵.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数规.
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
证明:若A为n阶方阵,则有|A*|=|(-A)*|(n≥2).
随机试题
对淋巴瘤患者的护理应做到
影响知觉选择性、整体性、理解性和恒常性的同一因素是()。
关于细菌性食物中毒的发病机制和病理,下列选项错误的是()
A.侵犯子宫深肌层B.绒毛形成C.两者均有D.两者均无葡萄胎
男性,57岁,胸闷伴下肢水肿2个月,心电图V1~V4导联QS波,目前最迫切的器械检查是
低渗性失水患者开始出现恶心、呕吐、肌肉挛痛(以腓肠肌明显)、四肢麻木及直立性低血压,其血钠浓度大约是
板桩建筑物锚碇系统拉杆的安装,拉杆连接铰的转动轴线应位于()。
()认为评价行政效率的高低,只能以行政过程的各个部分互相协调的程度和行政组织的整体合理性效果来评价。
A、 B、 C、 D、 B
ThemainpurposeofthisarticleistohighlypraiseIngridforherdedicationtohercareer.IngridplayedthepartofIlsaLu
最新回复
(
0
)