首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0x(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的( ).
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0x(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的( ).
admin
2019-02-01
106
问题
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫
0
x
(x-t)dt,G(x)=∫
0
1
xg(xt)dt,则当x→0时,F(x)是G(x)的( ).
选项
A、高阶无穷小
B、低阶无穷小
C、同阶但非等价无穷小
D、等价无穷小
答案
D
解析
F(x)=∫
0
x
f(x-t)dt=-∫
0
x
f(x-t)d(x-t)=∫
0
x
f(u)du,
G(x)=∫
0
1
xg(xt)dt=∫
0
x
g(u)du,则
,选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/3rj4777K
0
考研数学二
相关试题推荐
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的
设A是n阶可逆阵,其每行元素之和都等于常数a,证明:(1)a≠0;(2)A一1的每行元素之和均为.
设曲线y=ax3+bx2+cx+d经过(一2,44),x=一2为驻点,(1,一10)为拐点,则a,b,c,d分别为___________.
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
以yOz坐标面上的平面曲线段y=f(z)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm3,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm3/s增大,试求曲线y=f(z)的方程.
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明:(2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
在中,无穷大量是
随机试题
电动机出现不正常现象时应及时切断电源,排除故障。
抑制胰岛素分泌的激素是
动脉导管未闭周围血管征产生的主要原因是
A、等于零B、等于肾小球滤过率C、等于每分钟肾脏的血浆流量D、大于125ml/minE、小于125ml/min某物质经滤过后,又全部被肾小管重吸收,其血浆清除率
患者,女性,26岁,突然发热,一天后出现肉眼血尿,无尿频,尿痛,化验尿常规蛋白(+),红细胞30~40个/HP,白细胞10~20/HP。为尽早明确诊断,检查应首选
下列税种中,属于地方税的有()。
个人贷款贷前咨询的主要内容不包括()。
甲、乙、丙三人决定一起合伙做运输生意,甲、乙每人出资4万元,丙提出由于自己资金不足,所以负责联系业务,以劳务出资。三人约定,盈余以4:4:3的比例分配。同时,由于丙的办事能力较强,三人推举丙为负责人,全权负责处理日常业务。一年之后,乙觉得跑运输前景不好,所
AccordingtotheU.S.NationalHighwayTrafficSafetyAdministration(NHTSA),carcrashesaretheleadingcauseofdeathamong
【11】【14】
最新回复
(
0
)