首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4) )T,β=(1,b,c)T.试问:当a,b,c满足什么条件时 (1)β可由α1,α2,α3线性表出,且表示唯一? (2)β不能由α1,α2,α3线性表出? (3)β可由α1
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4) )T,β=(1,b,c)T.试问:当a,b,c满足什么条件时 (1)β可由α1,α2,α3线性表出,且表示唯一? (2)β不能由α1,α2,α3线性表出? (3)β可由α1
admin
2018-07-26
129
问题
设向量组α
1
=(a,2,10)
T
,α
2
=(-2,1,5)
T
,α
3
=(-1,1,4) )
T
,β=(1,b,c)
T
.试问:当a,b,c满足什么条件时
(1)β可由α
1
,α
2
,α
3
线性表出,且表示唯一?
(2)β不能由α
1
,α
2
,α
3
线性表出?
(3)β可由α
1
,α
2
,α
3
线性表出,但表示不唯一?并求出一般表达式.
选项
答案
1 设有一组数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=β 该方程组的系数行列式 [*] (1)当a≠-4时,|A|≠0,方程组有唯一解,β可由α
1
,α
2
,α
3
唯一地线性表出. (2)当a=-4时,对增广矩阵作行的初等变换,有 [*] 若3b-c≠1,则秩(A)≠秩([*]),方程组无解,β不能由α
1
,α
2
,α
3
线性表出. (3)当a=-4,且3b-c=1时,秩(A)=秩([*])=2<3,方程组有无穷多解,β可由α
1
,α
2
,α
3
线性表出, 但表示不唯一.此时,解得 k
1
=t,k
2
=-2t-b-1,k
3
=2b+1(t为任意常数) 因此有 β=tα
1
-(2t+b+1)α
2
+(2b+1)α
3
2 设有一组数x
1
,x
2
,x
3
,使得 x
1
α
1
+x
2
α
2
+x
3
α
3
=β 对该方程组的增广矩阵作初等行变换,有 [*] (1)当-2-[*]≠0,即a≠-4时,秩(A):秩([*])=3,方程组有唯一解,β可由α
1
,α
2
,α
3
线性表出,且表示唯一. (2)当-2-[*]=0,即a=-4时,对[*]作初等行变换,有 [*] 当3b-c≠1时,秩(A)≠秩([*]),方程组无解,β不能由α
1
,α
2
,α
3
线性表出. (3)同解1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3TW4777K
0
考研数学三
相关试题推荐
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
已知A=,证明A2=lA,并求l.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
设A,B均是n阶矩阵,下列命题中正确的是
设A是n阶反对称矩阵,x是n维列向量,如Ax=Y,证明x与y正交.
计算行列式的值:
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
随机试题
A.含铁血黄素沉积B.纤维组织增生C.两者均有D.两者均无慢性肝淤血
与血液生成关系最密切的脏是
ABO血型不合引起的新生儿溶血症最常见于
对所有资产类账户而言,借方表示增加,贷方表示减少。()
征收耕地的补偿费用不包括()。
有关募集设立的股份有限公司,下列表述不符合公司法律制度规定的是()。
简单地说,综述主要是面向圈内人的,有时甚至主要是给业内同行看的,所以完全用纯专业的语言来叙述。但元科普著作就不一样,它的目标是本领域以外的人群,为此就需要由最了解这一行的人将知识的由来和背景,乃至科研的甘苦和心得,都梳理清楚,娓娓道来。这就是非亲历者所不能
矛盾不可避免,问题总是存在,但我们既不能因为畏惧困难就____________________,也不能只凭____________________的一腔血勇。填入画横线部分最恰当的一项是:
设A=,B为三阶非零矩阵,且AB=O,则r(A)=___________.
Learningdisabilitiesareverycommon.Theyaffectperhaps10percentofallchildren.Fourtimesasmanyboysasgirlshavelea
最新回复
(
0
)