首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设A为三阶实对称矩阵,且满足条件A2+2.4=O,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
[2002年] 设A为三阶实对称矩阵,且满足条件A2+2.4=O,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
admin
2019-04-15
81
问题
[2002年] 设A为三阶实对称矩阵,且满足条件A
2
+2.4=O,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
选项
答案
解一 因A为三阶实对称矩阵,可对角化.又秩(A)=2,由命题2.5.4.1(2)知,A的非零特征值只有2个,另一个特征值为0.设A的非零特征值为λ,则A的矩阵多项式f(A)=A
2
+2A的特征值为λsup>2+2λ,且满足λ
2
+2λ=0即λ=-2,λ=0,故A的特征值为-2,-2,0,于是A~diag(-2,-2,0).由命题2.5.3.1(2)知,A+kE~diag(-2+k,-2+k,k).为使A+kE正定,只需其所有特征值全大于零,即-2+k>0,k>0.因而当k>2时,A+kE为正定矩阵. 解二 设λ为A的一个特征值,α为其对应的特征向量,则Aα=λα(α≠0),λ
2
α=λ
2
α,于是有 (A
2
+2A)α=(λ
2
+2λ)α. 由A
2
+2A=O得到(λ
2
+2λ)α=0,因α≠0,故λ
2
+2λ=0,所以λ=-2,λ=0.因A为实对称矩阵必可对角化,且秩(A)=2,由命题2.5.4.1(2)知,A~diag(-2,-2,0)=Λ. 因A的全部特征值为-2,-2,0,故A+kE的全部特征值为-2+k,-2+k,k.当k>2时,A+kE的全部特征值大于零,故A+kE为正定矩阵. 解三 因A为实对称矩阵,必可对角化,故存在可逆矩阵P,使P
-1
AP=Λ,则 A=PΛP
-1
, A+kE=PΛP
-1
+kPEP
-1
=P(Λ+kE)P
-1
, 其中Λ=diag(-2,-2,0),而-2,-2,0为A的特征值.因A+kE与Λ+kE相似,且Λ+忌kE=diag(k-2,k-2,k),当k>2时,Λ+kE的特征值(其顺序主子式)大于零,而相似矩阵的特征值相等,故A+kE的特征值也全大于零,因而A+kE当k>2时正定. 注:命题2.5.4.1 (2)若A为n阶实对称矩阵,则秩(A)等于A的非零特征值的个数(k重特征值视为k个特征值),因而零特征值的个数等于n-秩(A). 命题2.5.3.1 设A,B为n阶矩阵.(2)若n阶矩阵A相似于对角矩阵Λ,则其矩阵多项式f(A)一定相似于对角矩阵f(Λ)=diag(f(λ
1
),f(λ
2
),…,f(λ
n
)),即若A~Λ=diag(λ
1
,λ
2
,…,λ
n
),则 f(A)~f(Λ)=diag(f(λ
1
),f(λ
2
),…,f(λ
n
)),其中λ
1
,λ
2
,…,λ
n
为A的特征值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/37P4777K
0
考研数学三
相关试题推荐
设A,B为n阶对称矩阵,下列结论不正确的是().
求函数f(x)=∫0x2(2-t)e-tdt的最大值与最小值.
设随机变量X在1,2,3中等可能地取值,随机变量Y在1~X中等可能地取值。求:(Ⅰ)二维随机变量(X,Y)的联合分布律及边缘分布律;(Ⅱ)求在Y=2的条件下X的条件分布。
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为________。
A,B,C三个随机事件必相互独立,如果它们满足条件()
已知在10件产品中有2件次品,在其中任取两次,做不放回抽样。求下列事件的概率:(Ⅰ)两件都是正品;(Ⅱ)两件都是次品;(Ⅲ)一件是正品,一件是次品;(Ⅳ)第二次取出的是次品。
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().(B)nS2~χ2(n)
随机试题
每搏心输出量增加,可见于()
下列关于黄体囊肿的描述,错误的是
下列方法中属于化学法制备微囊的是
该患者的临床分期应该是首选的治疗措施是
负责非处方药目录的遴选、审批、发布和调整工作的是
公安机关勘验杀人现场时,提取了插在被害人胸部上的一把匕首。从证据分类的角度看,该匕首属于下列哪种分类?()
下列不属于法定公积金的专门用途的是()。
双方当事人分别向劳动合同履行地和用人单位所在地的劳动争议仲裁委员会申请仲裁,对案件有管辖权的是()。
由美国次贷危机引发的华尔街金融海啸迅速席卷全球,由此看出()是国家经济安全的核心。
在进行软件测试中,首先应当进行单元测试,然后进行(),最后再进行有效性测试。
最新回复
(
0
)