首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求: (Ⅰ)Z=XY的概率密度fZ(z); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=,P{Y=1}=,求: (Ⅰ)Z=XY的概率密度fZ(z); (Ⅱ)V=|X—Y|的概率密度fV(υ)。
admin
2018-01-12
134
问题
假设随机变量x与y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=一1}=
,P{Y=1}=
,求:
(Ⅰ)Z=XY的概率密度f
Z
(z);
(Ⅱ)V=|X—Y|的概率密度f
V
(υ)。
选项
答案
(Ⅰ)根据题意P{Y=一1}=[*],P{Y=1}[*],X~N(0,1)且X与Y相互独立,所以Z=XY的分布函数为 F
Z
(z)=P{XY≤z}=P{Y=一1}P{XY≤z|Y=一1}+P{y=1}P{XY≤z|y=1} =P{Y=一1}P{一X≤z|Y=一1}+P{Y=1}P{X≤z|Y=1} =P{Y=一1}P{X≥一z}+P{Y=1}P{X≤z} [*] 即Z=XY服从标准正态分布,所以其概率密度为 f
Z
(z)=φ(z)=[*] (Ⅱ)由于V=|X一Y|只取非负值,因此当υ<0时,其分布函数F
V
(υ)=P{|X一Y|≤υ}=0;当υ≥0时, F
V
(υ)=P{一υ≤X—Y≤υ} =P{Y=一1}P{一υ≤X—Y≤υ|Y=一1}+P{Y=1}P{一υ≤X—Y≤υ|Y=1} [*] 综上计算可得, [*] 由于F
V
(υ)是连续函数,且除个别点外,导数都是存在的,所以V的概率密度为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/uCX4777K
0
考研数学三
相关试题推荐
设甲、乙两人独立地射击同一目标,其命中率分别为0.6和0.5.则已命中的目标是被甲射中的概率为________。
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数。求(Ⅰ)θ的矩估计;(Ⅱ)θ的最大似然估计。
设二维随机变量(X,Y)的概率密度为求:(X,Y)的边缘概率密度fx(x),fy(y);
设随机变量X~N(μ,σ2),则随着σ的增大,概率P(|X一μ|<σ)
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是()
设总体X的概率密度为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.
设A,B,C是任意三个事件,事件D表示A,B,C中至少有两个事件发生,则下列事件中与D不相等的是()
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
设n元齐次线性方程组Ax=0的系数矩阵的秩r(A)=n-3,且α1,α2,α3为此方程组的三个线性无关的解,则下列向量组中可以作为Ax=0的基础解系的是()
随机试题
交换二次积分的积分次序=__________.
A和B都是某服装外贸公司的高级业务员。A年富力强,豁达开朗,口头禅是“鄙人有家有业,不愁吃不愁穿,只求有朝一日能实现儿时的梦想,独自驱车横穿撒哈拉沙漠,与非洲土著居民围着篝火唱歌跳舞”。B则精力充沛,办事风风火火,喜欢对人指手画脚.发号施令,一直渴望有朝一
2015年1月2日,甲公司将持有的乙公司发行的10年期公司债券出售给丙公司,经协商出售价格为305万元,2014年12月31日该债券公允价值为310万元。该债券于2014年1月1日发行,甲公司持有该债券时已将其分类为可供出售金融资产,面值为300万元,年利
下列自然人中,不能成为房屋租赁主体的是()。
教师在求知和传授知识、学问的过程中要做到严密谨慎、严格细致。这就要求教师必须()。
艺术构思的心理机制不包括()。
加强党的执政能力建设,必须()。
NetPowerByHaperMorrisNetworkingisapowerfulwayofbuildingprofessionalrelationshipsandgeneratingnewbusinessopport
Anyworkperformedbythebody,nomatterhowsmalltheamount,______energy,whetheroneisatworkorasleep.
It’sTimetoPayAttentiontoSleep,theNewHealthFrontier[A]Yourdoctorcouldsoonbeprescribingcrucialsleepastreatment
最新回复
(
0
)