首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
admin
2018-08-22
92
问题
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
选项
答案
由f(0)=f(1)知,存在η∈(0,1)使f’(η)=0. 令F(x)=x
2
f’(x),有F(0)=0,F(η)=η
2
f’(η)=0,故知存在ξ∈(0,η)[*](0,1)使F’(ξ)=0. 而F’(x)=2xf’(x)+x
2
f"(x),于是有2ξf’(ξ)+ξ
2
f"(ξ)=0. 又ξ≠0,所以2f’(ξ)+ξf"(ξ)=0.证毕.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2Uj4777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设三阶实对称阵A的特征值为1,2,3,A的属于特征值1,2的特征向量分别是ξ1=[一1,一1,1]T,ξ2=[1,一2,一1]T,求A.
已知α=[1,k,1]T是A-1的特征向量,其中,求k及α所对应的特征值.
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
已知向量组α1,α2,…,αs-1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
设u=其中函数f,g具有二阶连续偏导数,求
设(x,y)是平面区域D={(x,y)|x|<1,|y|<1}上的随机点.求关于t的方程t2+xt+y=0有两个正实根的概率.
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
半圆形闸门半径为R(米),将其垂直放入水中,且直径与水面齐,设水密度ρ=1.若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P为()
随机试题
侵蚀性葡萄胎可发生于
煤矿安全监察机构责令煤矿关闭矿井的,应当对执行情况随时()。
大幅土工膜拼接,以采用胶接法粘合或热元件法焊接,胶接法搭接宽度和热元件法焊接叠合宽度分别宜为()。
ERP与MRPⅡ的根本区别在于()。
在课程评价领域,()是指一门课程结束时或一个学年结束时进行的评价。
苏联的维果斯基在说明教学与发展关系时,提出()理论。
“黄河北,阴山南,八百里河套米粮川,渠道交错密入网,阡陌纵横似江南。”下列关于内蒙古河套灌区的说法,错误的一项是()。
以下的访问控制列表中,(51)禁止所有Telnet访问子网10.10.1.0/24。
Inresponsetotheneedsofachangingworld,therealmofeducationsystemhasbeendiversifiedovertheyears.
OnSaturday,BexarCountyDigitalLibrary—a$2.4million,4,000-square-footspacelocatedonthesouthsideofSanAntonio—opens
最新回复
(
0
)