首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型(x1,x2,x3)=4x22-3x32+2ax1x2-4x1x+3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+by32,求: (Ⅰ)参数a,b的值; (Ⅱ)正交变换矩阵Q。
设二次型(x1,x2,x3)=4x22-3x32+2ax1x2-4x1x+3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+by32,求: (Ⅰ)参数a,b的值; (Ⅱ)正交变换矩阵Q。
admin
2017-11-30
90
问题
设二次型(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+2ax
1
x
2
-4x
1
x+
3
+8x
2
x
3
(其中a为整数)经过正交变换化为标准形f=y
1
2
+6y
2
2
+by
3
2
,求:
(Ⅰ)参数a,b的值;
(Ⅱ)正交变换矩阵Q。
选项
答案
(Ⅰ)二次型矩阵为A=[*],由二次型的标准形f=y
1
2
+6y
2
2
+6y
3
2
,可知该二次型矩阵的特征值为λ
1
=1,λ
2
=6,λ
3
=b,根据特征值的和与乘积的性质可得方程组 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/29X4777K
0
考研数学三
相关试题推荐
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:为参数σ2的无偏估计量.
设=A,证明:数列{an}有界.
证明:当x≥0时,f(x)=∫0x(t一t2)sin2ntdt的最大值不超过
设f(x)在[0,1]上二阶可导,且f"(x)<0.证明:∫01f(x)dx≤.
设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布,证明:Z=X+Y服从参数为2n,p的二项分布.
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f"(0)以及极限
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n特别地,当AB=O时,有r(A)+r(B)≤n.
已知线性方程组及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
随机试题
下列关于国际市场营销的演进说法正确的是()
Shelikesthat______tableverymuch.
A.解毒、杀虫B.解毒、通便C.解毒、助阳D.解毒、燥湿E.解毒、止痛蟾酥的功效主要是()
某研究单位为了观察静脉营养对胃大部切除的狗的治疗效果,采集了动物血浆准备探讨双组的血浆中蛋白质总量的差异。该方法测定蛋白质时反应产生有色物质的颜色为
Colles骨折远端的典型移位是
以下不属于安全生产相关法律的有()。
三角贸易兴起于16世纪,其航程如下:满载着枪支、纺织品、铁器和奢侈品等货物的商船,从利物浦等欧洲港口“出程”;到达非洲后,用上述商品交换被掠来的非洲黑人,然后经大西洋西航美洲,此为“中程”;商船到达美洲后,以这些黑人换取蔗糖、咖啡、烟草、棉花等物品,再运回
日本有机蔬菜的认证条件非常苛刻,要求种植有机蔬菜的土地3年以内没有使用过任何农药、化肥。日本有机蔬菜的售价只比普通蔬菜高20%一30%。而在中国,有机蔬菜的价格是普通蔬菜的数倍甚至10倍。这说明,中国的有机蔬菜种植业是暴利行业。以下哪项陈述是上述结论需要假
下列税费中,应计入“管理费用”科目的有()
关于中国的无产阶级,下列说法中正确的有()
最新回复
(
0
)