首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt,线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt,线性无关.
admin
2015-07-22
111
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
,线性无关.
选项
答案
设kβ+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0,即 (k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0,等式两边左乘A,得(k+k
1
+…+k
t
) [*] k+k
1
+…+k
2
=0,则k
1
α
1
+…+k
t
α
t
=0.由α
1
,α
2
,…,α
t
线性无关,得k
1
=…=k
t
=[*]=0,所以β,β+α
1
,β+α
2
,…,α
t
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ryU4777K
0
考研数学三
相关试题推荐
2022年5月10日,习近平总书记在庆祝中国共产主义青年团成立100周年大会上发表重要讲话指出,“‘人生万事须自为,跬步江山即寥廓。’()是青年最宝贵的特质,也是党和人民最殷切的希望。”
2022年4月29日,中共中央政治局就依法规范和引导我国资本健康发展进行第三十八次集体学习。中共中央总书记习近平在主持学习时强调,资本是社会主义市场经济的重要生产要素,在社会主义市场经济条件下规范和引导资本发展,既是一个重大经济问题、也是一个重大政治问题,
明确坚持和发展中国特色社会主义,总任务是实现社会主义现代化和中华民族伟大复兴,在全面建成小康社会的基础上,分()在21世纪中叶建成()的社会主义现代化强国。
抗日战争时期,中国共产党为了团结一切可以团结的人士参与抗战,在抗日根据地建立了一种崭新的统一战线性质的政权——三三制政权,为抗战胜利作出了重要贡献。三三制是指抗日民主政府在工作人员分配上实行“三三制”原则,即
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
设A,B是同阶正定矩阵,则下列命题错误的是().
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
行列式=_____.
随机试题
生长激素的分泌每天夜间22点至凌晨是分泌的高峰期。()
有关“脑膜炎奈瑟菌”的叙述,哪几项不正确()
关于门窗洞口与门窗实际尺寸之间的预留缝隙大小,下述()不是决定因素。
根据我国《票据法》,如果汇票上加注“货物到达后付”,则构成支付的附加条件,该汇票无效。()
证券公司应当建立完备的协助开户制度,并履行的职责有( )。
下列关于企业所得税收人确认时间的说法中,不正确的是()。
ImightspeakEnglishfluentlyifI___________thechancetostayinAmericaforsometime.
近年来,智能手机市场的竞争日趋激烈。除传统手机制造商外,许多网络公司也纷纷斥资研发智能手机,并将内置其网络产品的智能手机推向市场。在下列选项中,能够解释“网络公司造手机”原因的是:
前瞻:预见:回溯
Canyouhelpmetogetthoseletters(mail)______?
最新回复
(
0
)