首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
admin
2018-11-22
76
问题
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P
-1
AP)
T
属于特征值λ的特征向量是( )
选项
A、P
-1
α
B、P
T
α
C、Pα
D、(P
-1
)
T
α
答案
B
解析
设B是矩阵(P
-1
AP
-1
)属于λ的特征向量,并考虑到A为实对称矩阵A
T
=A,有
(P
-1
AP)
T
β=λβ,即P
T
A(P
-1
)
T
=λβ.
把四个选项中的向量逐一代入上式替换β,同时考虑到Aα=λα,可得选项B正确,即
左端=P
T
A(P
-1
)
T
(P
T
α)=P
T
Aα=P
T
λα=λP
T
α=右端
所以府诜B.
转载请注明原文地址:https://www.kaotiyun.com/show/1oM4777K
0
考研数学一
相关试题推荐
已知随机变量X的概率分布为P{X=k}=(k=1,2,3),当X=k时随机变量Y在(0,k)上服从均匀分布,即则P{Y≤2.5}=_________。
将函数f(x)=展开成x的幂级数,并求级数的和。
设f(x)是连续函数。(Ⅰ)利用定义证明函数F(x)=可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=也是以2为周期的周期函数。
微分方程y’’+2y’+5y=0的通解为________。
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设A=(aij)n×n的秩为n,求齐次线性方程组Bx=0的一个基础解系,其中B=(aij)r×n,r<n。
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
设函数f(x,y)在(2,一2)处可微,满足f(sin(xy)+2cosx,xy一2cosy)=1+x2+2y+o(x2+y2),这里o(x2+y2)表示比x2+y2为高阶无穷小((x,y)→(0,0)时),试求曲面z=f(x,y)在点
设幂级数().
设a为实数,问方程ex=ax2有几个实根?
随机试题
(2013年4月,2011年4月)1928年底,在东北宣布“遵守三民主义,服从国民政府,改易旗帜”的是________。
给定资料1.陈阵:黄羊真是可怜,狼太可恶了。滥杀无辜,把别人的命都不当命。毕利格:不对,黄羊才是草原上的祸害。它们把草都吃没了。草原也有生命,是大命,所有其他的都是靠大命才生存的小命。陈阵:可是黄羊要那么可恶,您刚才干嘛还把那活的黄羊
业获得竞争优势可通过下列哪些途径?()
A、损伤的皮肤B、消化道C、呼吸道D、泌尿生殖道E、血液破伤风梭菌的最常见感染途径是
A.包扎固定B.牵引固定加闭式引流C.开胸止血加内固定D.肋间神经阻滞E.气管切开辅助呼吸多根多处肋骨骨折伴胸腔内进行性出血者应采取
A.足少阴肾经B.足厥阴肝经C.足阳明胃经D.足太阴脾经E.足少阳胆经行于下肢内侧后缘的经脉是
根据企业所得税总机构管理费税前扣除的规定,下列说法正确的有()。
有些专家指出,月饼高糖、高热量,不仅不利于身体健康,甚至演变成了“健康杀手”。月饼要想成为一种健康食品,关键要从工艺和配料方面进行改良,如果不能从工艺和配料方面进行改良,口味再好,也不能符合现代人对营养方面的需求。以下各项都可以从上述陈述中推出.除了
有三个关系R、S和T如下:则由关系R和S得到关系T的操作是
November31DearMr.TerenceCollins,Thankyouforchoosingto【K4】______theservicesofBaliTransport!Asyourequested,thep
最新回复
(
0
)