首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 证明当x≥0时,不等式e-x≤f(x)≤1成立。
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 证明当x≥0时,不等式e-x≤f(x)≤1成立。
admin
2022-10-13
73
问题
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
证明当x≥0时,不等式e
-x
≤f(x)≤1成立。
选项
答案
证法一 当x≥0时,f’(x)<0,则f(x)单调减少,又f(0)=1,因此f(x)≤f(0)=1 设ψ(x)=f(x)-e
-x
,则 ψ(0)=0,ψ’(x)=f’(x)+e
-x
=[*] 当x≥0是,ψ’(x)≥0,即ψ(x)单调增加,因而ψ(x)≥ψ(0),即有 f(x)≥e
-x
综上所述,当x≥0时,不等式e
-x
≤f(x)≤1成立。 证法二 由于∫
0
x
f
t
(t)dt=f(x)-f(0)=f(x)-1所以 [*] 因而e
-x
≤f(x)≤1。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1EC4777K
0
考研数学三
相关试题推荐
设f(x)满足。(Ⅰ)讨论f(x)在(-∞,+∞)是否存在最大值或最小值,若存在则求出;(Ⅱ)求y=f(x)的渐近线方程。
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
微分方程y"一3y’+2y=xe的通解为y=___________.
设α,β,γ均为大于1的常数,则级数()
将函数f(x)=arctan展开成x的幂级数.
设(1,一1)是曲线y=x3+ax2+bx+c的拐点,且y在x=0处取极大值.求a,b,c.
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)(1+y2)dx=(arctany-x)dy;(Ⅲ)y’+2y=sinx;(Ⅳ)eyy’-=x2(Ⅴ)(Ⅵ)(x2-3y2)x+(3x2-y2)=0;
设函数f(x)在(0,+∞)内具有二阶连续导数,且时,满足与f(1)=f′(1)=1.求函数f(r)的表达式.
dθ∫0secθrf(r∫0x)dr改为先y后x的累次积分的形式为_______.
设函数f(x)在[1,+∞)上可导,∫(1)=一2,f’(ex+1)=3e2x-3.(Ⅰ)求f(x)的表达式;(Ⅱ)求由x=1,x=2,y=f(x)及x轴所围成的图形分别绕x轴、x=2旋转一周所成旋转体的体积.
随机试题
关于脊柱、脊髓MRI检查技术,叙述错误的是
在我国有一种病毒的感染率为10%,比病毒可能是
A,STGT及纠正试验B,凝血因子活性检测C,复钙交叉试验D,血小板聚集试验E,FDP检测血友病检查的确诊试验是
槐花散主治
面神经的鼓索支分出处远端损伤表现是
男性,30岁。上腹隐痛2年余,近半年来厌食,消瘦乏力。先后两次胃镜检查均示胃体部大弯侧黏膜苍白,活检黏膜为中度不典型增生。对该患者的治疗最佳方法是
公共建筑的工作房间一般照明照度均匀度,按国家标准规定应不小于()。
为查明实物资产库存实际数量与账簿记录存量是否一致,确定实物资产盘盈与盘亏情况除了编制“盘存单”外,还编制()。[2011年真题]
二猫每天吃由食品A和食品B搅拌成的食物300克,食品A的蛋白质含量为10%,食品B的蛋白质含量为15%。如果该猫每天需要38克蛋白质,问食物中食品A的比重是百分之几?()
A.physicalB.adaptC.regulationD.taughtE.accuracyF.suitG.rousedH.requiredI.popularJ.heldK.spreadL.o
最新回复
(
0
)