首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 已知微分方程y’+y=f(x),其中f(x)是R上的连续函数. 若f(x)为周期函数,试证微分方程有解与其对应,且该解也为周期函数.
[2018年] 已知微分方程y’+y=f(x),其中f(x)是R上的连续函数. 若f(x)为周期函数,试证微分方程有解与其对应,且该解也为周期函数.
admin
2019-04-08
58
问题
[2018年] 已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.
若f(x)为周期函数,试证微分方程有解与其对应,且该解也为周期函数.
选项
答案
由条件可得通解为 y(x)=e
-∫1dx
[∫f(x)e
∫1dx
+C]=e
-x
∫f(x)e
x
dx+C)(C为任意常数). y(x+T)=e
-(x+T)
∫(x+T)e
x+T
dx+Ce
-(x+T)
=e
T
·e
-x
(∫f(x)e
x
·e
T
dx+C) =e
-T
·e
-x
·e
T
(∫f(x)e
x
dx+C
1
) =e
-x
(∫f(x)e
x
dx+C
1
), 欲使y(x)为周期函数,即y(x)=y(x+T),只需C
1
=C·e
-T
,再由e
-T
>0,得C=0. 所以,y(x)=e
-x
∫f(x)edx为方程对应的解,且为周期函数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1D04777K
0
考研数学一
相关试题推荐
已知线性方程组的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组的通解,并说明理由。
已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A2x=3Ax-2A2x。(Ⅰ)记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP-1;(Ⅱ)计算行列式|A+E|。
设矩阵α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为______。
设某班车起点站上客人数X服从参数λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且途中下车与否相互独立,以Y表示在中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
设A为m阶实对称阵且正定,B为m×n实矩阵,BT为B的转置矩阵.试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
计算zdxdydz,其中Ω是由x2+y2+z2=4与x2+y2=3z围成的几何体.
在空间坐标系的原点处,有一单位正电荷,设另一单位负电荷在椭圆z=x2+y2,x+y+z=1上移动,问两电荷间的引力何时最大,何时最小?
[2002年]已知函数y=y(x)由方程ey+6xy+x2一1=0确定,则y’’(0)=______.
随机试题
A.精神依赖性B.药物耐受性C.交叉依赖性D.身体依赖性E.药物强化作用滥用药物导致奖赏系统反复、非生理性刺激所致的特殊精神状态是()。
中国于1997年对香港恢复行使主权后,虽然实行“一国两制”,保持香港原有的资本主义制度和生活方式()年不变,依法保护私有财产权,但在《中华人民共和国香港特别行政区基本法》第七条规定香港的土地全部属于国家所有。
在凭证类型中设置“收款凭证”、“付款凭证”“转帐凭证”。
个人理财业务中客户委托商业银行理财,实质是()。
按照现行规定,下列各项中必须被登记为小规模纳税人的是()。
将86个苹果装进三种包装盒,共用了10个包装盒刚好装完。已知大包装盒每个装11个,中包装盒每个装7个,小包装盒每个装5个。问用了几个大包装盒?
下列选项中,属于结构不良问题的是
商业伦理调查员:XYZ钱币交易所一直误导它的客户说,它的一些钱币是很稀有的。实际上那些钱币是比较常见而且很容易得到的。XYZ钱币交易所:这太可笑了。XYZ钱币交易所是世界上最大的几个钱币交易所之一。我们销售钱币是经过一家国际认证的公司鉴定的,并且有钱币经营
Inthislatestfacetoftheongoinginformationrevolution,millionsofpersonalcomputersareconnectedbytheInternetandoth
Ithoughtthemeetingwasgoingtobeawful,butitdidn’t______toobadly.
最新回复
(
0
)