首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 已知微分方程y’+y=f(x),其中f(x)是R上的连续函数. 若f(x)为周期函数,试证微分方程有解与其对应,且该解也为周期函数.
[2018年] 已知微分方程y’+y=f(x),其中f(x)是R上的连续函数. 若f(x)为周期函数,试证微分方程有解与其对应,且该解也为周期函数.
admin
2019-04-08
68
问题
[2018年] 已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.
若f(x)为周期函数,试证微分方程有解与其对应,且该解也为周期函数.
选项
答案
由条件可得通解为 y(x)=e
-∫1dx
[∫f(x)e
∫1dx
+C]=e
-x
∫f(x)e
x
dx+C)(C为任意常数). y(x+T)=e
-(x+T)
∫(x+T)e
x+T
dx+Ce
-(x+T)
=e
T
·e
-x
(∫f(x)e
x
·e
T
dx+C) =e
-T
·e
-x
·e
T
(∫f(x)e
x
dx+C
1
) =e
-x
(∫f(x)e
x
dx+C
1
), 欲使y(x)为周期函数,即y(x)=y(x+T),只需C
1
=C·e
-T
,再由e
-T
>0,得C=0. 所以,y(x)=e
-x
∫f(x)edx为方程对应的解,且为周期函数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1D04777K
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),f(x1,x2,x3)在正交变换x=Qy下的标准形为()
已知方程组无解,则a=______。
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设L:.求曲线L与x轴所围成平面区域D的面积.
微分方程2y’’=3y2满足初始条件y(一2)=1,y’(一2)=1的特解为_______.
求解二阶微分方程满足初始条件的特解
在椭圆=1内嵌入有最大面积的四边平行于椭圆轴的矩形,求该矩形最大面积.
随机试题
消防水池是火灾时保证消防用水的重要设施,不能与生活用水共用水池。()
领导体制中的分权制的优点主要是()
假设你是Chu金属制造公司员工福利部的一名秘书。该机构的委员会每月召开一次会议,以保证公司通过恰当方式照顾到那些退休及患病的员工。下次会议于2012年10月23日举行。会议通常在主楼3层7号间内举行,但是你不确定会议当天房间是否可用。
By1929,MickeyMousewasaspopular______childrenasCoca-Cola.
T细胞表面具有如下哪些受体
患者,女,21岁。发现右侧乳腺外上象限一单个肿块3个月,呈卵圆形,约4cm×5cm大小,表面光滑,边缘清楚,质地坚韧,易推动,无压痛。应首先考虑的是
微观城市经济学的主要理论基础是()。
甲公司(水泥生产企业)于2005年7月在上海证券交易所上市,因2013年、2014年经审计的净利润连续为负值,上海证券交易所对其股票实施了退市风险警示。乙国有独资公司(由北京市国资委履行出资人职责)为甲公司的控股股东,持有甲公司40%的股份。甲公司2014
2009年度全国旅行社的旅游业务营业收入为1745.59亿元,同比增长8.87%;旅游业务毛利润为120.27亿元,旅游业务毛利率为6.89%。下列各项中,2009年毛利率最低的是()。
基佐法案是法国______时期著名的教育法案。()
最新回复
(
0
)