首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,且A的行和相等。 A能否相似对角化,若能,请求出正交矩阵Q使得QTAQ为对角矩阵,若不能,请说明理由。
已知A=,且A的行和相等。 A能否相似对角化,若能,请求出正交矩阵Q使得QTAQ为对角矩阵,若不能,请说明理由。
admin
2017-01-16
70
问题
已知A=
,且A的行和相等。
A能否相似对角化,若能,请求出正交矩阵Q使得Q
T
AQ为对角矩阵,若不能,请说明理由。
选项
答案
将a和b的值代入矩阵得 [*] 可知A是实对称矩阵,故A一定可以相似对角化。 由|λE-A|=0可得 (λ+1)
2
(λ-5)=0, 解得λ=-1(二重根)和5。 由(-E-A)x=0可得线性方程组的基础解系为 (1,0,-1)
T
,(0,1,-1)
T
, 即特征值-1所对的两个线性无关的特征向量为 α
1
=(1,0,-1)
T
,α
2
=(0,1,-1)
T
。 又因矩阵A的行和为5,所以特征值5对应的一个特征向量为α
3
=(1,1,1)
T
。 将上述三个向量正交化,得 β
1
=(1,0,-1)
T
, β
2
=α
2
-[*])
T
, β
3
=(1,1,1)
T
, 将其单位化即得正交矩阵 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1Cu4777K
0
考研数学一
相关试题推荐
1
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
证明下列极限都为0;
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
A是n阶矩阵,且A3=0,则().
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则Fy’(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的____________条件.
随机试题
Whatcanbelearnedaboutthespecialguest?
interface
一台机床有1/3时间加工零件A,2/3时间加工零件B,加工零件A时停机的概率为0.3,加工零件B时停机的概率为0.4,则机床停机的概率为________
一患儿以肠梗阻入院手术,术中医师将膀胱认作囊肿切除,造成患儿储尿、排尿功能严重受损。该事件中,医师的行为属
图示圆轴,固定端外圆上y=0点(图中A点)的单元体的应力状态是:
由于信息是公开的,理性的客户对利率走势的预测会与银行一致,当银行调整利率敏感性缺口的措施直接损害客户利益的时候,就会招致他们的抵制。()
物流的对象是具有一定质量的______,具有合乎要求的等级、尺寸、规格、性质、外观。
曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为().
OneanalystpredictsthatHongKongcanretainitscapitalistwaysafteritbecomespartofmainlandChinain1997aslongasa
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirworktheymustreadletters,reports,tradepublication
最新回复
(
0
)