首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 已知(1,-1,1,-1)T是该方程组的一个解,试求: (Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ)该方程组满足x2=x3的全部解。
设线性方程组 已知(1,-1,1,-1)T是该方程组的一个解,试求: (Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ)该方程组满足x2=x3的全部解。
admin
2017-11-30
246
问题
设线性方程组
已知(1,-1,1,-1)
T
是该方程组的一个解,试求:
(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;
(Ⅱ)该方程组满足x
2
=x
3
的全部解。
选项
答案
将(1,-1,1,-1)
T
代入方程组,得λ=μ。 对方程组的增广矩阵[*]施以初等行变换,得 [*] r(A)=[*]=3<4,故方程组有无穷多解,且ξ
0
=[*]为其一个特解,对应的齐次线性方程组的基础解系为η=(-2,1,-1,2)
T
,故方程组的全部解为 [*] k为任意常数。 当λ=[*]时,有 [*] r(A)=[*]=2<4,故方程组有无穷多解,且ξ
0
=[*]为其一个特解,对应的齐次线性方程组的基础解系为η
1
=(1,-3,1,0)
T
,η
2
=(-1,-2,0,2)
T
,故方程组的全部解为 [*] k
1
,k
2
为任意常数。 [*] 其中k
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/19X4777K
0
考研数学三
相关试题推荐
设二阶常系数线性微分方程y"+ay’+by=ce有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设=A,证明:数列{an}有界.
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f(tx1+(1一t)x2)≤tf(x1)+(1一t)f(x2).证明:
证明:当x≥0时,f(x)=∫0x(t一t2)sin2ntdt的最大值不超过
设f(x)在[0,1]上二阶可导,且f"(x)<0.证明:∫01f(x)dx≤.
已知线性方程组及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
随机试题
在我国半干旱草原区,植被破坏后经过足够的时间都能形成森林群落。
男性,72岁。颈部、腋下及腹股沟淋巴结肿大3个月,肝肋下2cm,脾肋下6cm,血红蛋白132g/L,白细胞122×109/L,血小板125×109/L。目前最应做的检查是
下列关于CT叙述中错误的是
哪项肺功能检查结果不符合阻塞性通气功能障碍?
有毒成分的指标一般包括
案情:老方创作的纪实小说《村支书的苦与乐》,以某县吴村村支部书记吴某为原型进行创作,其中描述了他与村霸林申(以林甲为原型)之间斗智斗勇的冲突场面。小说在《山南海北》杂志发表后,林甲认为小说将村支书作为正义的化身进行描述,将自己作为“村霸”进行刻画,侵犯其名
以下关于设备贷款额度说法不正确的是()。
简述京杭大运河的历史?
SirDenis,whois78,hasmadeitknownthatmuchofhiscollection______tothenation.
ThesearetoughtimesforWal-Mart,America’sbiggestretailer.Longaccusedofwreckingsmall-townAmericaandcondemnedforth
最新回复
(
0
)